317
правок
Изменения
Нет описания правки
== Доказательство эквивалентности ==
В циклах, помеченных <tex>(*)</tex> и <tex>(**)</tex>, просматривается не весь список <tex>I_jD_j</tex>, а только те ситуации, которые были добавлены на предыдущей итерации цикла <code>while</code>. Данная модификация является корректной.
# Рассмотрим цикл <tex>(*)</tex>. Если в текущей ситуации <tex>[B \rightarrow \eta \cdot, i]</tex> этого цикла <tex>i \ne j</tex>, то во внутреннем цикле просматривается список с меньшим индексом, в который новые ситуации больше не добавляются. Поэтому после первого просмотра этого списка будут добавлены все ситуации, удовлетворяющие условию, и больше ситуацию <tex>[B \rightarrow \eta \cdot, i]</tex> в цикле <tex>(*)</tex> рассматривать не нужно. Если же <tex>i = j</tex>, то <tex>\eta \Rightarrow^* \varepsilon</tex>, что возможно, только если <tex>B = S', \eta = \varepsilon</tex>. Тогда во внутреннем цикле не будет добавлено ни одной ситуации, так как <tex>S'</tex> не встречается в правых частях правил.
# Теперь рассмотрим цикл <tex>(**)</tex>. Так как для каждой ситуации <tex>[B \rightarrow \alpha \cdot A \eta, k]</tex> в список добавляется новая ситуация, соответствующая правилу из грамматики, а грамматика фиксирована, то после первого просмотра будут добавлены все возможные ситуации для <tex>[B \rightarrow \alpha \cdot A \eta, k]</tex>.
|about=1
|statement=
<tex>\forall\,j: 1 \le j \le n</tex> в списке <tex>I_jD_j</tex> находится <tex>O(j)</tex> ситуаций.
|proof=
Так как грамматика фиксирована, то <tex>\forall i</tex> количество ситуаций вида <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> не больше некоторой константы. Таким образом, поскольку в <tex>I_jD_j</tex> находятся ситуации, у которых <tex>0 \le i \le j</tex>, всего в <tex>I_jD_j</tex> будет <tex>O(j)</tex> ситуаций.
}}
|about=2
|statement=
Пусть <tex>\Gamma = (N, \Sigma, P, S)</tex> {{---}} однозначная КС-грамматика без непорождающих нетерминалов и <tex>a_1 \dots a_n</tex> {{---}} цепочка из <tex>\Sigma^*</tex>. Тогда алгоритм Эрли пытается включить <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> в <tex>I_jD_j</tex> не более одного раза, если <tex>\alpha \ne \varepsilon</tex>.
|proof=
Ситуацию <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> можно включить в <tex>I_jD_j</tex> только по правилам <tex>(1)</tex> (если последний символ <tex>\alpha</tex> — терминал) и <tex>(2)</tex> (если нетерминал). В первом случае результат очевиден. Во втором случае допустим, что <tex>[A \rightarrow \alpha'B \cdot \beta, i]</tex> включается в <tex>I_jD_j</tex>, когда рассматриваются две ситуации <tex>[B \rightarrow \eta_1 \cdot, k_1]</tex> и <tex>[B \rightarrow \eta_2 \cdot, k_2]</tex> (они различны, так как в цикле <tex>(*)</tex> каждая ситуация из каждого списка рассматривается по одному разу). Тогда ситуация <tex>[A \rightarrow \alpha' \cdot B\beta, i]</tex> должна оказаться одновременно в <tex>I_D_{k_1}</tex> и в <tex>I_D_{k_2}</tex>. Таким образом, получаем:
* <tex>\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_1}</tex> и <tex>\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_2}</tex>;
* <tex>\eta_1 \Rightarrow^* a_{k_1+1} \ldots a_j</tex> и <tex>\eta_2 \Rightarrow^* a_{k_2+1} \ldots a_j</tex>.
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины <tex>n</tex> составляет <tex>O(n^2)</tex>.
|proof=
Орагнизуем каждый список разбора <tex>I_jD_j</tex> таким образом, чтобы по любому символу <tex>x \in \Sigma \cup N</tex>, можно было за <tex>O(1)</tex> получить список тех и только тех ситуаций, содержащихся в <tex>I_jD_j</tex>, которые имеют вид <tex>[A \rightarrow \alpha \cdot x \beta, j]</tex>.
Время построения <tex>I_0D_0</tex> не зависит от входной строки.
Рассмотрим <tex>I_jD_j, \, j > 0</tex>.
# При включении ситуаций по правилу <tex>(1)</tex> необходимо лишь просмотреть предыдущий список и для каждого его элемента выполнить константное число операций.
# Рассмотрим правило <tex>(2)</tex>. Можно считать, что внутри цикла <tex>(*)</tex> рассматриваются те и только те ситуации, которые удовлетворяют условию (так как список таких ситуаций можно по нетерминалу получить за <tex>O(1)</tex>). Тогда каждая такая ситуация будет добавлена в список и, исходя из леммы 2, попытка добавления будет единственной. А так как по лемме 1 всего в списке <tex>I_jD_j</tex> находится <tex>O(j)</tex> ситуаций, то суммарно за все итерации внешнего цикла while внутри цикла <tex>(*)</tex> будет рассмотрено <tex>O(j)</tex> ситуаций.
# Так как грамматика фиксирована, то при применении правила <tex>(3)</tex> при рассмотрении любой ситуации количество включаемых ситуаций не превосходит некоторой константы, поэтому для каждой рассмотренной ситуации будет выполнено <tex>O(1)</tex> операций.
Таким образом, на построение списка <tex>I_jD_j</tex> будет потрачено <tex>O(j)</tex> операций. Тогда время работы алгоритма составляет <tex>O(n^2)</tex>.
}}