195
правок
Изменения
→Примеры вероятностных пространств
==Примеры вероятностных пространств==
# '''Конечные вероятностные пространства'''
## '''Честная монета''' <br /> Множество исходов <tex>\Omega = \left\{0,1\right\}</tex>, где <tex>0 </tex> {{---}} выпадает орел, <tex>1 </tex> {{---}} выпадает решка. <tex> p(0)=p(1)=0,5.</tex>. <br /> Рассмотрим все возможные события и их вероятности для этого пространства. <br/> <tex>\varnothing </tex>: <tex> p(\varnothing)=0</tex>. То есть вероятность того, что не выпадет ничего, равна нулю. <br/> <tex>\left\{0\right\} </tex>: <tex> p(0)=0,5</tex>. Вероятность того, что выпадет орел, равна одной второй. <br/> <tex>\left\{1\right\} </tex>: <tex> p(1)=0,5</tex>. Вероятность того, что выпадет решка, равна одной второй.<br/> <tex>\left\{0,1\right\} </tex>: <tex> p(\left\{0,1\right\})=1</tex>. Действительно, вероятность того, что выпадет орел или решка, равна единице.
## '''Нечестная монета''' <br/> Множество исходов здесь такое же, как и в предыдущем пространстве, однако <tex>p(0)=x, p(1) = 1 - x=y</tex>, где <tex>x,y \in \left[ 0,1 \right ]</tex>.
## '''Игральная кость''' <br/> Множество исходов <tex>\Omega = \left\{1,2,3,4,5,6\right\}</tex>. <tex> p(i)= \frac {1}{6}</tex>. Рассмотрим некоторые события этого пространства. <br/> <tex>A=\left\{1,2,3 \right\}</tex> : <tex>p(A)=\frac {1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}</tex>. Вероятность выпадения одного из трех чисел {{---}} 1, 2, 3 {{---}} равна одной второй. <br/> <tex>B=\left\{2,4 \right\}</tex> : <tex>p(B)=\frac {1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}</tex>. Числа 2 или 4 выпадут с вероятностью одна треть.