Изменения

Перейти к: навигация, поиск

Схема Бернулли

24 байта добавлено, 21:02, 1 июня 2017
Лемма
По определению условной вероятности,
<tex > P(r > n + k | r > n) = </tex> <tex> \dfrac{P(r > n + k, r > n)}{P(r > n)} = \dfrac{P(r > n + k)}{P(r > n)} </tex> <tex>\left(1\right)</tex>
Последнее равенство верно в силу того, что событие <tex> {r > n + k} </tex> влечёт событие <tex>{r > n}</tex>, поэтому их пересечением будет событие <tex> {r > n + k}</tex>. Найдём для целого <tex> m \geqslant 0</tex> вероятность <tex> P(r > m)</tex> : событие <tex> r > m </tex> означает,что в схеме Бернулли первые <tex>m</tex> испытаний завершились «неудачами», то есть его вероятность равна <tex> q^{m}</tex>. Возвращаясь к формуле <tex>\left(1\right)</tex>получаем, что эта [[Дискретная случайная величина | случайная величина]] равна <tex > P(r > n + k | r > n) = </tex> <tex> \dfrac{P(r > n + k, r > n)}{P(r > n)} = \dfrac{q^{n + k}} {q^{n}} =</tex> <tex> q^{k} = P(r > k)</tex>.
}}
195
правок

Навигация