96
правок
Изменения
м
Нет описания правки
}}
==Описание==
Модель представляет из себя [[Марковская цепь|марковскую цепь]], для которой нам известны начальная вероятность и матрица вероятностей переходов. Скрытой она называется потому, что мы не имеем информации о ее текущем состоянии. Мы получаем информацию на основе некоторого наблюдения, в рассмотренном ниже алгоритме мы будем использовать просто натуральное число от 1 до <tex>N</tex>, как индекс наблюдаемого события. Для каждого состояния скрытой марковской модели задан вектор вероятности эмиссии, который характеризует вероятность наблюдения каждого события, когда модель находится в этом состоянии. Совокупность таких векторов образует матрицу эмиссии.
Марковская модель <tex>\lambda</tex> задается как <tex>\lambda = \{S, \Omega, \Pi, A, B\}</tex>, где <tex>S = \{s_1, ..., \dots s_n\}</tex> {{---}} состояния, <tex>\Omega = \{\omega_1, ..., \dots \omega_m\}</tex> {{---}} возможные события, <tex>\Pi = \{\pi_1, ..., \dots \pi_n\}</tex> {{---}} начальные вероятности, <tex>A = \{a_{ij}\}</tex> {{---}} матрица переходов, а <tex>B = \{b_{i\omega_k}\}</tex> {{---}} вероятность наблюдения события <tex>\omega_k</tex> после перехода в состояние <tex>s_i</tex>.
== Пример Примеры ==
[[Файл:HMM-Moroz-Example.png|350px|thumb|right|Пример СММ]]
Рассмотрим пример скрытой марковской модели. У Деда Мороза есть три мешка с подарками в разноцветной упаковке: красной, синей, зеленой и фиолетовой. Ночью Дед Мороз пробирается в квартиру и тайком выкладывает подарки под елкой в ряд, доставая по одному подарку из мешка. Наутро мы обнаруживаем упорядоченную последовательность из пяти подарков и хотим сделать наилучшее предположение о последовательности мешков, из которых он доставал эти подарки.