Изменения
Нет описания правки
}}
Для начала решим обе задачи.
Первая задача решается методом [[Сортировка_слиянием|«разделяй и властвуй»]] {{---}} давайте разделим массив <tex>a[0 \dots n-1]</tex> на 2 массива <tex>a[0\dots\fracdfrac{n}{2} - 1]</tex> и <tex>a[\fracdfrac{n}{2} \dots n-1]</tex> и рекурсивно решим задачу для каждого из них. Осталось научиться находить количество искомых пар <tex>(i, j)</tex>, таких что <tex>i < \fracdfrac{n}{2}, j \geqslant \fracdfrac{n}{2}</tex>. Для этого воспользуемся другой известной техникой {{---}} методом двух указателей. Посчитаем массив префиксных сумм для правой половины <tex>pref[i] = \sum_{j=\fracdfrac{n}{2}}^{i} a_j</tex> и суффиксных (<tex>suf[i] = \sum_{j=i}^{\fracdfrac{n}{2} + 1} a_j</tex>) {{---}} для левой. Заведем два указателя (<tex>p_1</tex> и <tex>p_2</tex>). Изначально установим <tex>p_1 = \fracdfrac{n}{2} - l + 1, p_2 = \fracdfrac{n}{2}</tex>. Пока <tex>p_2 - 1> \fracdfrac{n}{2}</tex> и
<tex>pref[p_2] + suf[p_1] > W </tex> будем уменьшать <math>p_2</math> на <math>1</math>. Если после этого <math>pref[p_2] + suf[p_1] \leqslant W</math>, то к ответу прибавим <math>(p_2 - \fracdfrac{n}{2} + 1) * (\fracdfrac{n}{2} - p_1)</math>, посго, увеличим <math>p_1</math> на <math/math>. Так будем делать, пока <math>p_1 < \fracdfrac{n}{2}</math>. В конце сложим текущий ответ и ответы для половин массива {{---}} получим ответ на задачу. Асимптотика такого алгоритма: <tex>T(n) = 2 * T(n / 2) + O(n) = O(n)</tex>
Вторая задача имеет запросы на изменение и поэтому надо применить динамическую версию «разделяй и властвуй» {{---}} [[Дерево_отрезков._Построение|дерево отрезков]]. Построим дерево отрезков,
|id=191213
|definition =
'''Центроидом дерева''' (англ. ''centroid'') называется такая вершина <math>v</math> дерева <math>t</math>, после удаления которой дерево разбивается на несколько (<math>k</math>) поддеревьев <tex>t_1, t_2,\dots, t_k</tex>, таких что для каждого <math>i</math>: <tex>|t_i| \leqslant \fracdfrac{n}{2}</tex>, т.е. размер каждого поддерева не превосходит половины размера исходного дерева.
}}
Итак, в случае дерева идея разделяй-и-властвуй из предыдущего пункта будет формулироваться так: найдем центроид. Предположим, что мы сумели найти центроид за <math>O(n)</math>, где <math>n</math> {{---}} размер дерева. Тогда, как и в упрощенной версии задачи {{---}} рекурсивно найдем ответ для всех поддеревьев <tex>t_1, t_2,\dots, t_k</tex>, после чего попытаемся найти недостающие пары вершин, находящиехя в разных поддеревьях и удовлетворяющих вопросу задачи. Для этого будем отвечать на следующие запросы: пусть мы сейчас считаем все пары, где первая из вершин находится в поддереве <math>t_i</math> и мы в некоторой структуре данных <math>S</math> храним все вершины остальных деревьев (каждую вершину задаем парой <math>(depth(v), length(v))</math> {{---}} глубина вершины и длина пути до нее из корня поддерева), расстояние до которых от корня их поддерева не превышает <math>min(l, n)</math>. Тогда просто пройдемся по всем вершинам <math>u</math> поддерева <math>t_i</math> и прибавим к ответу число вершин в структуре <math>S</math>, таких, что <tex>depth(u) \leqslant l - depth(v)</tex> и <tex>length(u) \leqslant l - length(v)</tex>. Это двумерные запросы, на которые можно отвечать за <math>O(log^2(n)</math> с помощью [[Многомерное_дерево_отрезков|2d-дерева отрезков]], либо за <math>O(log(n))</math> с помощью [[Перечисление_точек_в_произвольном_прямоугольнике_за_n_*_log_%5E(d_-_1)_n_(range_tree)|техники поиска точек в d-мерном пространстве]]. Также читателю предлагается придумать и более эффективные и простые способы решить эту подзадачу.
В любом дереве <math>t</math> существует центроид.
|proof=
Рассмотрим корень дерева <math>(r)</math>. Положим изначально <math>v = r</math>. Изначально <math>|subtree(v)| = n</math>. Среди всех детей <math>v</math> выберем вершину <math>u</math> с максимальным размером поддерева. Если <math>v</math> {{---}} не центроид, то положим <math>v = u</math> и продолжим выбор нового u, иначе {{---}} остановимся. Докажем, что мы в какой-то момент остановимся. Пусть в призвольный момент времени <math>v</math> {{---}} не центроид и размер её наддерева меньше <math>\fracdfrac{n}{2}</math>, значит максимальное поддерево имеет размер больше чем <math>\fracdfrac{n}{2}</math>, т.е. <math>|subtree(u)| > \fracdfrac{n}{2}</math>, а значит размер "наддерева" вершины <math>u</math> равен <tex>n - |subtree(u)| < \fracdfrac{n}{2}</tex>. При этом теперь размер любого поддерева, на которое распадется дерево t при удалении вершины <math>u</math> не превосходит <math>|subtree(u)| - 1</math>, т.к. наддерево имеет размер меньше, чем поддерево <math>u</math>, а любое поддерево вершины <math>u</math> имеет хотя бы на <math>1</math> вершину меньше (сама вершина <math>u</math>). По индукции получаем, что в любой момент времени размер наддерева вершины v меньше <math>\fracdfrac{n}{2}</math>, значит мы будем спускаться только вниз по дереву <math>t</math>, и при переходе к вершине <math>u</math> {{---}} сыну <math>v</math> размер максимального поддерева уменьшится как минимум на <math>1</math>. Значит не более чем за <math>n</math> шагов наши действия прекратятся и мы окажемся в центроиде дерева <math>t</math>, ч.т.д.
Итак, мы конструктивно доказали существование центроида и привели линейный относительно размера дерева алгоритм его нахождения.
}}
# Простой путь между любой парой вершин <math>u, v</math> в дереве <math>t</math> содержит центроид <tex>c \in T(t)</tex>, такой что <tex>u, v \in T(c)</tex>.
|proof=
# Действительно, т.к. размер поддерева <math>s</math> каждой вершины <math>c</math> дереве <math>T</math> не превосходит <tex>\fracdfrac{|subtree(c)|}{2}</tex>, то при спуске в каждую следующую вершину на пути к любому листу в дереве <math>T</math> размер поддерева вершины, в которой мы сейчас находимся, уменьшается как минимум на <math>2</math>. Значит длина всего пути до листа не превосходит <math>log(n)</math>, ч.т.д.
# Второе свойство очевидно из построения дерева <math>T</math>, т.к. если вершина принадлежит дереву центроидов <math>T</math>, то она является центроидом, а из построения <math>T</math> мы знаем, что каждая вершина исходного дерева принадлежит и дереву <math>T</math>.
# Третье свойство {{---}} прямое следствие первых двух, т.к. вершина принадлежит любому центроиду <math>c</math> т.и т.т., когда c {{---}} отец вершины <math>v</math> в дереве центроидов. Т.к. вершина <math>v</math> точно принадлежит дереву <math>T</math> (свойство 2), то она лежит на каком-то пути в дереве <math>T</math>, причем все ее родители (центроиды) ее содержат. А по свойству 1 длина любого вертикального (и даже простого) пути есть <math>O(log(n))</math>, ч.т.д.