Изменения

Перейти к: навигация, поиск

Взвешенное дерево

424 байта добавлено, 16:06, 21 июня 2017
м
Поиск элемента
Таким образом, сложность получается логарифмическая, НО! При <tex>\alpha</tex> близком к <tex>0.5</tex> мы получаем двоичный (или почти двоичный) логарифм, что означает практически идеальную скорость поиска. При <tex>\alpha</tex> близком к единице основание логарифма стремится к единице, а значит общая сложность стремится к <tex>O(N)</tex>.
 
*<tex>root</tex> {{---}} корень дерева или поддерева, в котором происходит поиск.
*<tex>k</tex> {{---}} искомый ключ в дереве.
 
'''Search'''(root, k):
'''if ''' root = null or root.key = k:
'''return ''' root
'''else if ''' k ≤ root.left.key:
'''return ''' Search(root.left, k)
'''else''':
'''return ''' Search(root.right, k)
 
=== Вставка элемента ===
Классический алгоритм вставки нового элемента: поиском ищем место, куда бы подвесить новую вершину, ну и подвешиваем. Легко понять, что это действие могло нарушить <tex>\alpha</tex>-балансировку по весу для одной или более вершин дерева. И вот теперь начинается то, что и дало название нашей структуре данных: требуется найти Scapegoat-вершину — вершину, для которой потерян <tex>\alpha</tex>-баланс и её поддерево должно быть перестроено. Сама только что вставленная вершина, хотя и виновата в потере баланса, Scapegoat-вершиной стать не может — у неё ещё нет потомков, а значит её баланс идеален. Соответственно, нужно пройти по дереву от этой вершины к корню, пересчитывая веса для каждой вершины по пути. Может возникнуть вопрос - нужно ли хранить ссылки на родителей? Поскольку к месту вставки новой вершины пришли из корня дерева — есть стек, в котором находится весь путь от корня к новой вершине. Берутся родителей из него. Если на этом пути от нашей вершины к корню встретится вершина, для которой критерий <tex>\alpha</tex>-сбалансированности по весу нарушился — тогда полностью перестраивается соответствующее ей поддерево так, чтобы восстановить <tex>\alpha</tex>-сбалансированность по весу.
96
правок

Навигация