113
правок
Изменения
→Критерий Тарьяна
В результате алгоритма получится минимальное остовное дерево <tex> A </tex>, состоящее полностью из безопасных ребер, так как на каждом шаге добавлялось безопасное ребро.
Теперь, рассмотрим какой-нибудь разрез <tex> (S, T) </tex> уже построенного дерева <tex> A </tex> и пересекающее ребро <tex> (u, v) </tex>, причем <tex> u \in S </tex>, а <tex> v \in T </tex>. Найдем путьв изначальном графе <tex> G </tex>, соединяющий вершины <tex> u </tex> и <tex> v </tex>. Так как они находятся в разных компонентах связности, то какое-нибудь ребро <tex> (a, b) \notin A</tex> тоже будет пересекать разрез <tex> (S, T) </tex>. Очевидно, что <tex> w(a, b) \leqslant w(u, v) </tex>, так как второе {{---}} безопасное ребро.
}}