Изменения

Перейти к: навигация, поиск
Нет описания правки
Пусть <tex>G_{set}(g, n, k)</tex> {{---}} семейство всех графов с <tex>n</tex> вершинами, обхватом <tex>g</tex> и максимальной степенью вершин не более <tex>k</tex>. При <tex>n</tex> > <tex>g</tex> очевидно, что <tex>G_{set}(g, n, k) \neq \emptyset</tex>: например, этому множеству принадлежит граф, состоящий из простого цикла на <tex>g</tex> вершинах и <tex>n - g</tex> изолированных вершин.
Пусть <tex>v_{<k}(G)</tex> {{---}} количество вершин степени меньше <tex>k</tex>в графе <tex>G</tex>, а <tex>dist_{<k}(G)</tex> {{---}} максимальное из расстояний между парами вершин степени менее <tex>k</tex> в графе <tex>G</tex>. (при <tex>v_{<k}(G) < 2</tex>, положим <tex>dist_{<k}(G) = 0</tex>). Выберем в <tex>G_{set}(g, n, k)</tex> граф следующим образом: сначала выберем все графы с максимальным количеством рёбер, затем из них выберем графы с максимальным <tex>v_{<k}</tex>, и, наконец, из оставшихся выберем граф <tex>G</tex> c максимальным <tex>dist_{<k}(G)</tex>.
Докажем, что <tex>G</tex> {{---}} регулярный граф степени <tex>k</tex>.
1) Если <tex>dist_G(x, y) \geqslant g - 1</tex>, то соединим их ребром и получим граф <tex>G' = G \cup xy, G'\in G_{set}(g, n, k)</tex>, при этом <tex>|E(G')| > |E(G)|</tex> (так как в графе <tex>G'</tex> есть все те рёбра, которые есть в <tex>G</tex>, и ребро <tex>xy</tex>). Значит, граф <tex>G</tex> не может быть выбран из множества <tex>G_{set}(g, n, k)</tex>, так как у него не максимальное количество рёбер.
2) Так <tex>d_G(x), d_G(y) \leqslant k - 1 </tex>, а степени остальных вершин графа не более <tex>k</tex>, то на расстоянии не более <tex>g - 1</tex> от <tex>y</tex> находится не более чем <tex>1 + (k - 1) + ... \ldots + (k - 1)^{g - 1} = \sum\limits_{n=0}^{g - 1} (k - 1)^n = \dfrac{(k-1)^{g} - 1}{k - 2}</tex> вершин графа, а на расстоянии не более <tex>g - 2</tex> от <tex>x</tex> находится не более чем <tex>1 + (k - 1) + ... \ldots + (k - 1)^{g - 2} = \sum\limits_{n=0}^{g - 2} (k - 1)^n =\dfrac{(k-1)^{g - 1} - 1}{k - 2}</tex> вершин. Так как <tex>\dfrac{(k-1)^{g - 1} - 1}{k - 2} + \dfrac{(k-1)^{g} - 1}{k - 2} = \dfrac{k(k-1)^{g-1} - 2}{k - 2}</tex>, а <tex> n > \dfrac{k(k-1)^{g-1} - 2}{k - 2}</tex>, то по условию теоремы существует такая вершина <tex>z</tex>, что <tex>dist(x, z) \geqslant g - 1</tex> и <tex>dist(y, z) \geqslant g</tex>.
Рассмотрим случай 2а) <tex>d_G(z) < k</tex>. В таком случае, <tex>d_G(z) < k, d_G(y) < k, dist_G(y, z) \geqslant g</tex>, что невозможно, согласно пункту 1. В таком случае:
Степени всех остальных вершин в <tex>G</tex> и <tex>G'</tex> совпадают. Тогда <tex>G' \in G_{set}(g, n, k)</tex>. Из <tex>\textbf{(2)}</tex> следует, что <tex>v_{<k}(G') \geqslant v_{<k}(G)</tex>. Тогда ввиду выбора графа <tex>G</tex> должно быть <tex>v_{<k}(G') = v_{<k}(G)</tex>, что возможно лишь при <tex> d_{G'}(x) = k</tex> и <tex>d_G(x) = k - 1,</tex>. Так как <tex>kn</tex> чётно, вершина <tex>x</tex> не может быть единственной вершиной степени менее <tex>k</tex> в графе <tex>G</tex>, поэтому <tex>x \neq y</tex>.
}}
137
правок

Навигация