Изменения

Перейти к: навигация, поиск

Неравенство Крафта

1100 байт добавлено, 15:11, 1 января 2018
доказательство достаточности
[[file:Treeforkraft.jpg|thumb|250px|Иллюстрация к доказательству индукционного перехода]]
Напомним, что префиксный код можно представить в виде <tex>r</tex>-ичного корневого дерева, рёбра которого соответствуют символам алфавита, а листья соответствующим кодам. Неравенство Крафта будем доказывать по [[Математическая индукция|индукции]].
'''Необходимость:'''
 
Напомним, что префиксный код можно представить в виде <tex>r</tex>-ичного корневого дерева, рёбра которого соответствуют символам алфавита, а листья соответствующим кодам. Неравенство Крафта будем доказывать по [[Математическая индукция|индукции]].
Для простоты рассмотрим сначала случай двоичного алфавита, то есть <tex>r = 2</tex>.
'''База: ''' Если максимальная длина пути на дереве равна <tex>1</tex>, то в дереве есть одно или два ребра длины <tex>1</tex>. Таким образом, либо <tex> \dfrac{1}{2} \leqslant 1 </tex> — для одного символа источника, либо <tex> \dfrac{1}{2} + \dfrac{1}{2} \leqslant 1 </tex> — для двух символов источника.
'''Переход:''' Предположим далее, что неравенство Крафта справедливо для всех деревьев высоты меньше <tex>n - 1</tex>.
Докажем, что оно справедливо и для всех деревьев высоты меньше <tex>n</tex>. Для данного дерева максимальной высоты <tex>n</tex> ребра из первой вершины ведут к двум поддеревьям, высоты которых не превышают <tex>n - 1</tex>; для этих поддеревьев имеем неравенства <tex>K_1 \leqslant 1</tex> и <tex>K_2 \leqslant 1</tex>, где <tex>K_1, K_2</tex> — значения соответствующих им сумм. Каждая длина <tex>l_i</tex> в поддереве увеличивается на <tex>1</tex>, когда поддерево присоединяется к основному дереву, поэтому возникает дополнительный множитель <tex>\dfrac{1}{2}</tex>. Таким образом, имеем <tex>\dfrac{1}{2} K_1 + \dfrac{1}{2} K_2 \leqslant 1</tex>.
Для доказательства достаточности опишем рекурсивную процедуру, которая строит код для данного набора длин <tex> l_i </tex>, удовлетворяющих неравенству <tex> \sum\limits_{i = 1}^{n} r ^{-l_i} \leqslant 1 </tex>.
Нужно разделить Если некоторое <tex> l_i = 0 </tex>, то <tex> n = 1 </tex>. В таком случае пустая строка является искомым префиксным кодом. Далее все <tex> l_i \geqslant 1 </tex>. Разделим длины <tex> l_i </tex> на <tex>r</tex> групп, внутри каждой из которых <tex> \sum\limits r ^{-l_i} \leqslant \dfrac{1}{r} </tex>. У всех слов из слов из одной группы будет одна и та же начальная буква. Разделить длины на группы можно следующим жадным образом: брать <tex> l_i </tex> в порядке увеличения индекса. Несложно понять, что в таком случае группа будет либо полностью укомплектована, либо будут исчерпаны все возможные <tex> l_i </tex>. Затем нужно запустить данную процедуру для каждой группы слов, предварительно обрезав первую букву. Доказательство корректности проведём по индукции по величине <tex> l_n </tex>.  '''База:''' Если <tex> l_n = 0 </tex>, то процедура корректна.  '''Переход: ''' (очевиден) Допустим, что процедура корректна для <tex> l_n = w </tex>. Докажем, что процедура корректна и для <tex> l_n = w + 1 </tex>.  Заметим, что у слов каждой группы будет своя начальная буква, поэтому достаточно проверить префиксность кода для каждой группы. А это истинно по предположению индукции, где для каждой группы <tex> l_i \leqslant w </tex>.
}}
29
правок

Навигация