Изменения

Перейти к: навигация, поиск

Участник:Artem.ustinov/НВП

66 байт убрано, 23:06, 10 января 2018
м
Основная идея
Предположим, мы знаем такое приближение числа <tex>k</tex> числом <tex>m: m \geqslant k</tex>. Мы обсудим, как найти такое <tex>m</tex> позже.
Во время обработки ключей элементов описанный выше алгоритм <tex>\mathrm{LIS}</tex> работает только с очередью <tex>B</tex> и не зависит от предыдущих элементов последовательности, которые не находятся в очереди. Поэтому, если мы разобьем всю последовательность на блоки из <tex>m</tex> элементов (последний блок может быть меньше), и нам удастся обрабатывать каждый как перестановку из <tex>m</tex> элементов за счёт переименовывания элементов, сохраняя очередь <tex>B</tex> для вычисленных ранее блоков, то мы получим асимптотическое время <tex>O(n \operatorname{log} \operatorname{log} (k + m))</tex>, а так как <tex>m \geqslant k</tex>, то <tex>O(n \operatorname{log} \operatorname{log} m)</tex>. (Мы будем обрабатывать блоки последовательно, т.е. с предыдущего блока у нас может остаться <tex>k</tex> значений в очереди, которые дополняются <tex>m</tex> значениями очередного блока — получаем верхнее ограничение в <tex>k + m</tex> обрабатываемых возможных значений.)
=== Деление на блоки===
76
правок

Навигация