Изменения

Перейти к: навигация, поиск

Прямое произведение ДКА

18 байт добавлено, 20:50, 10 марта 2018
Нет описания правки
#*<tex>\delta(\langle s_1, q_2 \rangle, 0) = \langle \delta_1(s_1, 0), \delta_2(q_2, 0) \rangle = \langle s_1, q_2 \rangle </tex>
#*<tex>\delta(\langle s_1, q_2 \rangle, 1) = \langle \delta_1(s_1, 1), \delta_2(q_2, 1) \rangle = \langle t_1, t_{21} \rangle </tex>
#*...<tex>\ldots</tex>
{{Утверждение
|statement=Автомат <tex>A = \langle \Sigma, Q, s, T, \delta \rangle</tex>, построенный как прямое произведение автоматов <tex>A_1</tex> и <tex>A_2</tex> будет их пересечением.
|proof=Возьмем слово <tex>\alpha</tex>, которое допускает автомат <tex>A_1</tex> и автомат <tex>A_2</tex>. Выпишем все состояния в порядке допуска слова <tex>\alpha</tex> автоматом <tex>A_1</tex> {{---}} <tex>a_{11}, a_{12}, ... \ldots, a_{1|\alpha|}</tex> и все состояния проходимые при допуске слова автоматом <tex>A_2</tex> {{---}} <tex>a_{21}, a_{22}, ... \ldots, a_{2|\alpha|}</tex>. Построим список пар <tex>\langle a_{1i}, a_{2i} \rangle</tex>, где <tex>i = 1, 2, ...\ldots, |\alpha|</tex>. Данный список является списком состояний в процессе допуска слова <tex>\alpha</tex> автоматом <tex>A</tex>, так как:
*<tex>\langle a_{11}, a_{21} \rangle = \langle s_1, s_2 \rangle</tex> {{---}} сохраняется стартовое состояние
442
правки

Навигация