Изменения
→Перестановка, меняющая сумму ряда
:<tex>\sum\limits_{k = 0}^{n} \left ( \frac 1{2k+1} - \frac 1{2k+2} - \frac 1{4k + 4} \right ) = \left ( 1 + \frac 13 + \dots + \frac 1{2n+1} \right ) - \left ( \frac 12 + \frac 14 + \dots + \frac 1{4n+4} \right ) =</tex>
:<tex>= H_{2n} - \frac 12 H_n - \frac 12 H_{2n+2} = \frac 12 \left ( H_{2n} - H_n - \frac 1{2n+1} - \frac 1{2n+2} \right ) \rightarrow \frac{\ln 2}2</tex>
}}
== Перемножение рядов ==
Две суммы из конечного числа слагаемых перемножаются почленно. Для бесконечного числа слагаемых необходимо формализовать процесс перемножения.
Организуем бесконечную матрицу из чисел <tex>c_{ij} = a_i \cdot b_j</tex>. Пусть <tex>\varphi : \mathbb{N} \rightarrow \mathbb{N}^2</tex> - правило обхода матрицы, по которому матрицу можно развернуть в строку, то есть ряд, сумму которого можно посчитать (при сходимости такого ряда).
Если сумма такого ряда равна произведению сумм исходных рядов, то говорят, что два ряда можно перемножить по способу <tex>\varphi</tex>.
Важнейший способ перемножения - способ Коши произведения по диагонали:
:<tex>\alpha_k = \sum\limits_{j = 0}^{k} a_j b_{k - j}</tex>
{{Теорема
|statement=
Пусть ряды из <tex>a_n, b_n</tex> абсолютно сходятся и имеют суммы <tex>A</tex> и <tex>B</tex>. Тогда их можно перемножить любым способом <tex>\varphi</tex>.
}}