286
правок
Изменения
Нет описания правки
Докажем по отдельности корректность декомпозиции.
# Все рёбра покрыты путями. <br>Есть два типа вершин: те, из которых ведёт ровно одно тяжёлое ребро и те, из которых не ведёт ни одного тяжёлого ребра. Для первого типа вершин мы дойдем до них некоторым путём через тяжёлое ребро снизу по определению выбора путей, а лёгкие рёбра ведущие из неё возьмем как последние рёбра в соответствующих путях. Для второго типа вершин мы по определению выбора путей возьмем их как начальные и пойдем вверх. <br>Таким образом все рёбра будут покрыты.
# Все пути не пересекаются. <br>Докажем от противного. Пусть мы взяли какое-то ребро дважды. Это значит, что из какой-то вершины <tex>v</tex> ведет более <tex>1</tex> тяжелого ребра в детей. Эти ребра относятся к разным путями, однако пути имеют хотя бы общее ребро {{---}} ребро из <tex>v</tex> в отца <tex>v</tex>. Более <tex>1</tex> тяжелого ребра из вершины идти не может, следовательно , получили противоречие.
# При прохождении пути от вершины <tex>v</tex> до вершины <tex>u</tex> произойдет смена не более, чем <tex>O(\log{n})</tex> путей. <br>Докажем эквивалентный факт, что при пути от любой вершины до корня мы сменим не более, чем <tex>O(\log{n})</tex> путей. Рассмотрим лёгкое ребро. Заметим, что проход вниз по такому ребру уменьшает размер поддерева как минимум в <tex>2</tex> раза. Но смена пути может произойти только при переходе по лёгкому ребру. Таким образом мы сменим не более <tex>O(\log{n})</tex> путей.
}}
|statement=Пусть есть вершины <tex>u</tex> и <tex>v</tex>, лежащие на разных путях. При этом <tex>U</tex>, <tex>V</tex> — корни путей, на которых они лежат. Если <tex>U</tex> более удален от корня дерева, чем <tex>V</tex>, то <tex>\mathrm{LCA}(u, v) = \mathrm{LCA}(U, v)</tex>.
|proof=Допустим, пути не пересекаются. Предположим, что <tex>\mathrm{LCA}(u, v)</tex> не равныи <tex>\mathrm{LCA}(U, v)</tex> отличаются. Тогда существует вершина, на пути от <tex>u</tex> к <tex>U</tex>, являющаяся <tex>\mathrm{LCA}</tex>. Значит <tex>\mathrm{LCA}</tex> должен принадлежать двум путям, но по предположению пути не пересекаются. Тем самым пришли к противоречию.
Теперь рассмотрим случай, когда пути пересекаются. Пути не могут совпадать более, чем в одной вершине, так как построенная декомпозиция является реберно-непересекающейся. При этом корень одного из путей является вершиной другого (либо корни совпадают, что равносильно), поскольку в противном случае пути пересекаются в более чем <tex>1</tex> вершине, что противоречит предыдущему условию. <tex>\mathrm{LCA}</tex> должен принадлежать двум путям, значит именно этот корень и будет <tex>\mathrm{LCA}</tex>.
====Препроцессинг====
Построим heavy-light декомпозицию для данного нам дерева. Для каждой вершины, помимо её предка, будем хранить дополнительно следующие значения:
# Расстояние до корня дерева. <br />Вычисляется за <tex>O(1)</tex> с помощью времен входа\выхода в каждую вершину.
# Корень пути, на котором лежит вершина. <br /> Поскольку вершина может принадлежать нескольким путям, выберем тот, чья начальная вершина наиболее удалена от корня дерева. Имея разбиение на пути, найти корень можно за <tex>O(1)</tex>.