Изменения

Перейти к: навигация, поиск

Натуральные числа

2006 байт добавлено, 23:03, 12 мая 2018
Существование наименьшего элемента
Для любого подмножества натурального ряда всегда существует минимум.
Т. е. <tex>\forall A \subset \mathbb N, A \ne \varnothing, \exists x \in A: \forall y \in A, x \leqslant y</tex>
}}
Из этой теоремы вытекает следующее утверждение, эквивалентное аксиоме математической индукции, но иногда более удобное при проведении доказательств.
{{Утверждение
|id=utv1
|author=
|about=
|statement= Если <tex>T(n)</tex> истинно при <tex>n = 1,</tex> а из того, что оно истинно при всех <tex>n < k,</tex> следует, что оно истинно и при <tex>n = k,</tex> то <tex>T(n)</tex> истинно для всех натуральных значений <tex>n</tex>.
|proof=Обозначим через <tex>A</tex> подмножество натуральных чисел, для которых <tex>T(n)</tex> ложно. Если это подмножество непусто, то оно содержит наименьшее число k. Этим числом не может быть <tex>1</tex>, так как по условию <tex>T(1)</tex> истинно. Значит, <tex>k > 1</tex>. Но поскольку <tex>k</tex> — наименьшее число, для которого <tex>T(n)</tex> ложно, то для всех <tex>n < k</tex> <tex>T(n)</tex> истинно, а тогда по условию теорем оно должно быть истинно и при <tex>n = k</tex>. Мы пришли к противоречию — одновременно оказалось, что <tex>T(k)</tex> истинно и ложно. Следовательно, предположение о том, что <tex>A</tex> не пустое множество, ложно. Значит, <tex>A</tex> — пустое множество, т.е. нет натуральных чисел, для которых <tex>T(n)</tex> ложно. Что означает, что <tex>T(n)</tex> истинно для всех натуральных значений <tex>n</tex>.
}}
344
правки

Навигация