Изменения

Перейти к: навигация, поиск

Натуральные числа

6 байт добавлено, 04:00, 3 июня 2018
Сложение
Есть два способа определения суммы двух натуральных чисел <tex>a\ и\ b</tex>. Если натуральные числа определяют через мощность множества с конечным числом элементов (мощность множества — это количество элементов в нём), тогда целесообразно дать следующее определение суммы:
Пусть <tex>N(S) — </tex> мощность множества <tex>S</tex>. Возьмём два не пересекающихся множества <tex>A\</tex> и <tex>B,\</tex> причём <tex>N(A) = a</tex> и <tex>N(B) = b</tex>.
Тогда <tex>a + b</tex> можно определить как: <tex>N ( A ∪ B )</tex>.
Здесь, <tex>A ∪ B — </tex> это объединение множеств <tex>A \ и B\</tex>. В альтернативной версии этого определения множества <tex>A \ и \ B</tex> перекрываются и тогда в качестве суммы берётся их дизъюнктное объединение, механизм, который позволяет отделять общие элементы, вследствие чего эти элементы учитываются дважды.
Другое известное определение рекурсивно:
344
правки

Навигация