Изменения

Перейти к: навигация, поиск

Левосторонние красно-чёрные деревья

352 байта убрано, 19:08, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{Определение
|definition = Левосторонние Левостороннее красно-черные деревья черное дерево {{---}} двоичные деревья тип сбалансированного двоичного дерева поиска, в котором баланс осуществляется на основе "цвета" узла деревагарантирующий такую же асимптотическую сложность операций, который принимает только два значения: "красный" и "чёрный". Данный тип [[Красно-черное дерево|как у красно-черных деревьев]] имеет ряд преимуществ над классической структурой. Разработан Робертом Соджевиском в <tex>2008</tex> годучерного дерева поиска.
}}
==Свойства==
*Корневой узел всегда черный.
*Каждый новый узел всегда окрашен в красный цвет.
*Каждый дочерний нулевой узел листа дерева считается черным.
==Вращения==
* Ни один путь от корня до листьев дерева не содержит двух последовательных красных узлов.
* Количество черных узлов на каждом таком пути одинаково.
Из этих инвариантов следует, что длина каждого пути от корня до листьев в красно-черном дереве с <tex>N</tex> узлами не превышает <tex>2 \cdot \log(N)</tex> .
Основные операции, используемые алгоритмами сбалансированного дерева для поддержания баланса при вставке и удалении, называются вращениямивращением вправо и вращением влево. Эти операции Первая операция трансформируют <tex>3</tex>-узел(совокупность из <tex>3</tex> узлов, где <tex>2</tex> узла являются наследниками третьего, причем одна из связей является красной), левый потомок которого окрашен в красный, в <tex>3</tex>-узел, правый потомок которого окрашен в красный и ,вторая операция {{---}} наоборот. Вращения сохраняют два указанных выше инварианта, не изменяют поддеревья узла.===ПсевокодПсевдокод===
[[File:rotateRight.png|310px|thumb|upright|Rotate Right]]
'''Node''' rotateRight(h : '''Node''')
x = h.left
h.left= x.right x.right= h
x.color = h.color
h.color = RED
'''return''' x
[[File:rotateLeft.png|310px|thumb|upright|Rotate Left]]
'''Node''' rotateLeft(h : '''Node''')
x.color = h.color
h.color = RED
'''return''' x
==Переворот цветов==
 В красно-черных деревьях используется такая операция как '''Переворот переворот цветов''' , которая инвертирует цвет узла и двух его детей. Она не изменяет количество черных узлов при на любом обходе пути от корня до листьев деревалиста, но может привести к появлению двух последовательных красных узлов. ===Псевдокод===
[[File: ColorFlip.png|320px|thumb|upright| Переворот цветов]]
 
'''void''' flipColors(h : '''Node''' h)
h.color = '''!''' h.color
h.left.color = '''!''' h.left.color h.right.color = <tex> '''!</tex> ''' h.right.color
==Вставка==
Если высота узла нулевая, возвращаем новый красный узел.
[[File:insertNode.png|310px|thumb|upright|Вставка нового узла]]
 
'''if''' (h == '''null''')
return new Node(key, value, RED)
 
*Расщепление узла с <tex>4</tex>-я потомками:
Если левый предок и правый предок красные, запускаем вращение переворот цветов от текущего узла.
[[File:Split4node.png|310px|thumb|upright|Расщепление узла]]
'''if''' (isRed(h.left) '''&&''' isRed(h.right))
colorFlip(h)
 
*Принудительное вращение влево:
[[File:Enforce.png|310px|thumb|upright|Принудительное вращение]]
Если правый предок красный, вращаем текущую вершину влево.
'''if''' (isRed(h.right))
h = rotateLeft(h)
 
*Балансировка узла с <tex>4</tex>-я потомками:
[[File:Balance4node.png|310px|thumb|Балансировка]]
Если левый предок красный и левый предок левого предка красный, то вращаем текущую вершину вправо.
'''if''' (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h)
===Псевдокод===
'''Node''' insert(h : '''Node''', key : '''Key''', value : '''Value''')
<span style="color:#008000">// Вставка нового листа</span>
'''if''' (h == ''null'')
'''return''' '''new''' Node(key, value)
<span style="color:#008000">// Расщепление узла с <tex>4</tex>-я потомками</span>
'''if''' (isRed(h.left) '''&&''' isRed(h.right))
colorFlip(h)
<span style="color:#008000">// Стандартная вставка [[Дерево поиска, наивная реализация|в дереве поиска]]</span>
'''intif''' cmp key = key.compareTo(h.key) '''if''' (cmp == 0)
h.val = value
'''else'''
'''if''' cmp key < 0 h.key
h.left = insert(h.left, key, value)
'''else'''
h.right = insert(h.right, key, value)
<span style="color:#008000">// Принудительное вращение влево</span>
'''if''' (isRed(h.right) '''&&''' '''!'''isRed(h.left))
h = rotateLeft(h)
<span style="color:#008000">// Балансировка узла с <tex>4</tex>-я потомками</span>
'''if''' (isRed(h.left) '''&&''' isRed(h.left.left))
h = rotateRight(h)
'''return''' ''h''
==Поиск==
Поиск в левосторонних красно-черных деревьях эквивалентен поиску в [[Дерево поиска, наивная реализация|наивной реализации дерева поиска]].
Для поиска элемента в красно-черных деревьях дереве поиска можно воспользоваться циклом,который проходит от вершины корня до искомого элемента. Если же элемент отсутствует, цикл пройдет до листа дерева и прервется. Для каждого узла цикл сравнивает значение его ключа с искомым ключом. Если ключи одинаковы, то функция возвращает текущий узел, в противном случае цикл повторяет для левого или правого поддерева. Узлы, которые посещает функция образуют нисходящий путь от корня, так что время ее работы <tex>O(h)</tex>, где <tex>h</tex> {{---}} высота дерева.
===Псевдокод===
'''Value''' search(key : '''Key''')
'''Node''' x = root
'''while''' (x '''!'''= null)
'''intif''' cmp key = key.compareTo(x.key) '''if''' cmp == 0
'''return''' x.val
'''else'''
'''if''' cmp key < 0x.key
x = x.left
'''else'''
'''if''' cmp key > 0 x.key
x = x.right
'''return''' ''null''
==Удаление=====Исправление правых красных связей===
*Использование Переворота цветов и вращений сохраняет баланс черной связи.
*После удаления необходимо исправить правые красные связи и устранить узлы с <tex>4</tex>-я потомками
'''if''' isRed(h.left) '''&&''' isRed(h.right)
colorFlip(h)
'''return''' ''h''
===Удаление максимума===
* Спускаемся вниз по правому краю дерева.
* Если поиск заканчивается на узле с <tex>4</tex>-мя или <tex>5</tex>-ю потомками, просто удаляем узел.
'''Node''' moveRedLeft(h : '''Node''')
colorFlip(h)
'''if''' (isRed(h.right.left)
h.right = rotateRight(h.right)
h = rotateLeft(h)
colorFlip(h)
'''return''' ''h''
'''Node''' deleteMax(h : '''Node''')
'''if''' (isRed(h.left))
<span style="color:#008000">// вращаем все 3-вершины вправо</span>
h = rotateRight(h)
<span style="color:#008000">// поддерживаем инвариант (h должен быть красным)</span>
'''if''' (h.right == '''null''') return ''null''
<span style="color:#008000">// заимствуем у брата если необходимо</span>
'''if''' (!isRed(h.right) '''&&''' !isRed(h.right.left))
h = moveRedRight(h)
<span style="color:#008000">// опускаемся на один уровень глубже </span>
'''Node''' moveRedLeft(h : '''Node''')
colorFlip(h)
if (isRed(h.right.left))
h.right = rotateRight(h.right)
h = rotateLeft(h)
colorFlip(h)
'''return''' ''h''
'''void''' deleteMin()
'''Node''' deleteMin(h : '''Node''')
<span style="color:#008000">// удаляем узел на нижнем уровне(h должен быть красным по инварианту)</span>
if (h.left == ''null'')
'''return''' ''null''
<span style="color:#008000">// Если необходимо, пропушим красную ссылку вниз</span>
<span style="color:#008000">// опускаемся на уровень ниже </span>
h.left = deleteMin(h.left)
'''return''' fixUp(h)
==Асимптотика==
1632
правки

Навигация