Изменения

Перейти к: навигация, поиск

Уменьшение размерности

1984 байта добавлено, 17:39, 30 декабря 2018
Нет описания правки
'''Фильтры''' (англ. filter methods) измеряют релевантность признаков на основе функции $\mu$, и затем решают по правилу $\kappa$, какие признаки оставить в результирующем множестве.
Фильтры могут быть :
*Одномерные (англ. univariate) {{---}} функция $\mu$ определяет релевантность одного признака по отношению к выходным меткам. В таком случае, обычно, измеряют "качество" каждого признака и удаляют худшие.
*Многомерные (англ. multivariate) {{---}} функция $\mu$ определяет релевантность некоторого подмножества исходного множества признаков относительно выходных меток.
 
Распространенными вариантами для $\mu$ являются коэффициент ранговой корреляции Спирмена, Information gain и коэффициент Джини.
Преимуществом группы фильтров является простота вычисления релевантности признаков в датасете, но недостатком в таком подходе является игнорирование возможных зависимостей между признаками.
===Wrappers===
'''Оберточные методы''' (англ. wrapper methods)находят подмножество искомых признаков последовательно, используя некоторый классификатор как источник оценки качества выбранных признаков, т.е. этот процесс является циклическим и продолжается до тех пор, пока не будут достигнуты заданные условия останова. Оберточные методы учитывают зависимости между признаками, что является преимуществом по сравнению с фильтрами, к тому же показывают большую точность, но вычисления занимают длительное время, и повышается риск [[переобучение|переобучения]]. Два самых простых типа оберточных методов:*SFS (Sequential Forward Selection) {{---}} жадный алгоритм, который начинает с пустого множества признаков, на каждом шаге добавляя лучший из еще не выбранных признаков в результирующее множество*SBS (Sequential Backward Selection) {{---}} алгоритм обратный SFS, который начинает с изначального множества признаков, и удаляет по одному или несколько худших признаков на каждом шаге 
===Embedded===
===Hybrid===
==Примечания==
==Источники информации==
#[http://research.cs.tamu.edu/prism/lectures/pr/pr_l11.pdf Sequential feature selection] {{---}} курс ML Texas A&M University
Анонимный участник

Навигация