Изменения

Перейти к: навигация, поиск

Кластеризация

1 байт добавлено, 17:48, 18 января 2019
м
Постановка задачи кластеризации
Решение задачи кластеризации объективно неоднозначно по ряду причин:
* не Не существует однозначного критерия качества кластеризации. Известен ряд алгоритмов, осуществляющих разумную кластеризацию "по построению", однако все они могут давать разные результаты. Следовательно, для определения качества кластеризации и оценки выделенных кластеров необходим эксперт предметной области.* число Число кластеров, как правило, заранее не известно и выбирается по субъективным критериям. Даже если алгоритм не требует изначального знания о числе классов, конкретные реализации зачастую требуют указать этот параметр<ref>[https://scikit-learn.org/stable/modules/clustering.html scikit-learn {{---}} Clustering]</ref>.* результат Результат кластеризации существенно зависит от метрики. Однако существует ряд рекомендаций по выбору метрик для определенных классов задач.<ref>Cornwell, B. (2015). Linkage Criteria for Agglomerative Hierarchical Clustering. Social Sequence Analysis, 270–274.</ref>
Число кластеров фактически является гиперпараметром для алгоритмов кластеризации. Подробнее про другие гиперпараметры и их настройку можно прочитать в статье<ref>Shalamov Viacheslav, Valeria Efimova, Sergey Muravyov, and Andrey Filchenkov. "Reinforcement-based Method for Simultaneous Clustering Algorithm Selection and its Hyperparameters Optimization." Procedia Computer Science 136 (2018): 144-153.</ref>.
 
== Теорема невозможности Клейнберга ==
Для формализации алгоритмов кластеризации была использована аксиоматическая теория. Клейнберг постулировал три простых свойства в качестве аксиом кластеризации и доказал теорему, связывающую эти свойства.
174
правки

Навигация