64
правки
Изменения
→Алгоритмы бустинга
Основное расхождение между многими алгоритмами бустинга заключается в методах определения весовых коэффициентов точек [[Общие понятия|тренировочных данных]]<sup>[на 18.01.19 не создан]</sup> и гипотез. Первым алгоритмом, который смог адаптироваться к слабому обучению был '''AdaBoost'''<ref>[http://rob.schapire.net/papers/explaining-adaboost.pdf Explaining AdaBoost {{---}} Robert E. Schapire]</ref> (сокр. ''Adaptive Boosting''), предложенный Шапире и Фройндом.
Алгоритмы бустинга могут использовать выпуклую или невыпуклую функцию потерь. Выпуклые алгоритмыАлгоритмы с выпуклой функцией, такие как AdaBoost и LogitBoost<ref>[https://en.wikipedia.org/wiki/LogitBoost Wikipedia {{---}} LogitBoost]</ref>, могут некорректно классифицировать из-за случайного шума, так как не могут обучить базовым и поддающимся научению комбинациям слабых гипотез. Алгоритмы бустинга, основанные на невыпуклой оптимизациифункции потерь, такие как BrownBoost<ref>[https://ru.wikipedia.org/wiki/BrownBoost Википедия {{---}} BrownBoost]</ref>, позволяют избежать переобучения на данных с большим количеством "шума", откидывая зашумленные элементы.
==Прикладное использование алгоритмов бустинга==