174
правки
Изменения
Выброс
,→Другие алгоритмы борьбы с выбросами
===Другие алгоритмы борьбы с выбросами===
В статистике методы, устойчивые к нарушениям модельных предположений о данных, называются ''робастными''. Метод локально взвешенного сглаживания относится к ''робастным'' методам, так как он устойчив к наличию небольшого количества выбросов.
* [[Дерево принятия решений и случайный лес|Дерево принятия решения ]] (англ. ''decision tree''<ref>[https://ru.wikipedia.org/wiki/%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B9 Дерево принятия решения]</ref>). Это дерево, как и уже описанный алгоритм локально взвешенного сглаживания, относится к ''робастным'' методам.* [[Вариации регрессии|Робастная регрессия ]] (англ. ''robust regression''<ref>[https://en.wikipedia.org/wiki/Robust_regression Робастная регрессия]</ref>). В отличии от регрессии, использующей, например, метод наименьших квадратов, в этом алгоритме не строится идеализированное предположение, что вектор ошибок <math>\varepsilon</math> распределен согласно нормальному закону. Однако на практике зачастую имеют место отклонения от этого предположения. Тогда можно применить метод наименьших модулей (англ. ''Least Absolute Deviation, LAD ''<ref>[https://en.wikipedia.org/wiki/Least_absolute_deviations Метод наименьших модулей]</ref>) в случае, если распределение ошибок измерений подчиняется распределению Лапласа (англ. Laplace distribution <ref>[https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%9B%D0%B0%D0%BF%D0%BB%D0%B0%D1%81%D0%B0 Распределение Лапласа]</ref>).
==См.также==