Изменения

Перейти к: навигация, поиск

Мета-обучение

397 байт добавлено, 00:20, 9 апреля 2019
Нет описания правки
Идея в некоторой степени аналогична использованию предварительно обученной модели в классификации изображений (ImageNet) или в [[обработка естественного языка | NLP]] (большие текстовые корпуса),
когда доступен только ограниченный набор образцов данных для конкретной задачи. Модель обучается таким образом, чтобы она могла обобщиться до других датасетов.
 
<h2> Лэндмарки </h2>
Лэндмарки это один из подходов для описания задач мета-обучения. В отличие от предшетсвенников, использовавших только статистические метрики, лендмарки стараются
определить расположение конкретной задачи мета-обучения в пространстве всех задач обучения, измеряя производительность некоторых простых и эффективных алгоритмов.
Таким образом, можно скзаать, что алгоритм обучения сам характеризуют задачу.
 
<h3>Relative landmarks</h3>
Первая мера для вычисления "похожести" задач вычисляла попарно разницу в производительности, так же называемую "relative landmarks" $RL_{a,b,j} = P_{a,j} - P_{b,j}$ между двумя конфигурациями $\theta_{a}$ и $\theta_{b}$ на конкретной задаче $t_{j}$.
 
<h3> Линейный дискриминант </h3>
 
Линейный дискриминант (англ. ``linear discriminant'') $P(\theta_{Lin},t_{j})$ можно понимать как группировка и разделение категорий соответсвующих конкретным признакам. Линейный дискриминант
обычно ищет линейную комбинацию признаков, которая лучше всего разделеит классы. Результат - линия, плоскость или гиперплоскость, зависит от числа комбинированных признаков.
 
<h3> Наивный Байесовский лендмарк </h3>
 
Наивный Байесовский лендмарк $P(\theta_{NB},t_{j})$ <ref>Daren Ler, Irena Koprinska, and Sanjay Chawla. Utilizing regression-based landmarkers within a meta-learning framework for algorithm selection. \emph{Technical Report 569. University of Sydney}, pages 44--51, 2005.</ref> {{---}} вероятностный классификатор, основанный на [[формула байеса | теореме Байеса]. Называется наивным потому что предполагается, что все атрибуты независимы друг от друга.
 
<h3> 1NN </h3>
Elite 1-nearest neighbor $P(\theta_{1NN},t_{j})$ <ref>Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-Carrier. Meta-learning by landmarking various learning algorithms.In \emph{17th International Conference on Machine Learning (ICML)}, pages 743 -- 750, 2000.</ref> [[Метрический классификатор и метод ближайших соседей|kNN]] c $k = 1$.
Помогает установить, является ли задача релевантной, если похожи их атрибуты.
<h2>Основанные на оптимизации</h2>
Во время вычисления похожести задач важно нормализовать все мета-признаки, использовать отбор признаков <ref>L Todorovski and S Dzeroski. Experiments in meta-level learning with ILP. Lecture Notes in Computer Science, 1704:98–106, 1999.</ref> или использовать [[уменьшение размерности | уменьшение размерности]] (например, principal component analisys {{---}} [[Метод главных компонент (PCA)| PCA]]).
 
<h2> Лэндмарки </h2>
Лэндмарки {{---}} один из подходов для описания задач мета-обучения. В отличие от предшетсвенников, использовавших только статистические метрики, лэндмарки стараются
определить расположение конкретной задачи мета-обучения в пространстве всех задач обучения, измеряя производительность некоторых простых и эффективных алгоритмов.
Таким образом, можно сказать, что алгоритм обучения сам характеризуют задачу.
 
<h3> Относительные лэндмарки </h3>
Первая мера для вычисления "похожести" задач вычисляла попарно разницу в производительности, так же называемую "relative landmarks" $RL_{a,b,j} = P_{a,j} - P_{b,j}$ между двумя конфигурациями $\theta_{a}$ и $\theta_{b}$ на конкретной задаче $t_{j}$.
 
<h3> Линейный дискриминант </h3>
 
Линейный дискриминант (англ. linear discriminant) $P(\theta_{Lin},t_{j})$ можно понимать как группировка и разделение категорий соответсвующих конкретным признакам. Линейный дискриминант
обычно ищет линейную комбинацию признаков, которая лучше всего разделеит классы. Результат {{---}} линия, плоскость или гиперплоскость, зависит от числа комбинированных признаков.
 
<h3> Наивный Байесовский лэндмарк </h3>
 
Наивный Байесовский лэндмарк $P(\theta_{NB},t_{j})$ <ref>Daren Ler, Irena Koprinska, and Sanjay Chawla. Utilizing regression-based landmarkers within a meta-learning framework for algorithm selection. \emph{Technical Report 569. University of Sydney}, pages 44--51, 2005.</ref> {{---}} вероятностный классификатор, основанный на [[формула байеса | теореме Байеса]]. Называется наивным потому что предполагается, что все атрибуты независимы друг от друга.
 
<h3> 1NN </h3>
Elite 1-nearest neighbor $P(\theta_{1NN},t_{j})$ <ref>Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-Carrier. Meta-learning by landmarking various learning algorithms.In \emph{17th International Conference on Machine Learning (ICML)}, pages 743 -- 750, 2000.</ref> [[Метрический классификатор и метод ближайших соседей|kNN]] c $k = 1$.
Elite {{---}} вариация основного метода, но в этом случае на вход kNN подается предварительно отобранное множество самых информативных примеров (у них минимлаьная
разница приращения информации (information gain).Помогает установить, является ли задача релевантной, если похожи их атрибуты.
 
== Примечания ==
16
правок

Навигация