Изменения

Перейти к: навигация, поиск

Level Ancestor problem

41 байт убрано, 20:04, 14 мая 2019
Нет описания правки
а для каждой вершины сохраним ее номер в пути, в который она входит. Построение обычной longest-path декомпозиции займет у
нас <tex>O(n)</tex> времени (обход в глубину), соответственно удлиннение каждого пути ухудшит асимптотику до <tex>O(n \log n)</tex>.
=== Двоичные подъемы ===
После этого посчитаем двоичные подъемы для каждой вершины за <tex>O(\log n)</tex>, что соответственно не ухудшит асимптотику.
#<tex>v = p_i[v]</tex>
=== Доказательство корректности ===
* Рассмотрим путь, на котором лежит вершина <tex>v</tex> до удвоения. Он длины хотя бы <tex>2^i</tex>, так как мы точно знаем, что существует вершина потомок <tex>v</tex>, расстояние до которого ровно <tex>2^i</tex> (это вершина, из которой мы только что пришли). Значит, после удвоения этот путь стал длины хотя бы <tex>2^{i + 1}</tex>, причем хотя бы <tex>2^i</tex> вершин в нем - предки <tex>v</tex>. Это означает, что вершина, которую мы ищем, находится на этом пути (иначе бы мы могли до этого прыгнуть еще на <tex>2^i</tex> вверх). Так как мы знаем позицию <tex>v</tex> в этом пути, то нужную вершину мы можем найти за <tex>O(1)</tex>.
Таким образом, наш алгоритм работает за < <tex>O(n\log n), O(1)</tex> >. Методом четырех русских данный метод можно улучшить до < <tex>O(n), O(1)</tex> > с помощью оптимизации предподсчета.
Анонимный участник

Навигация