Изменения

Перейти к: навигация, поиск

Регуляризация

6 байт добавлено, 11:39, 21 января 2020
Лассо регрессия
:$\begin{cases} Q(\beta) = \| F\beta - y \|^2 \rightarrow min_{\beta} \\ \sum_{j=1}^n|\beta_{j}| \leq \chi \\ \end{cases}$
Так как используется $L_{1}$-регуляризатор, коэффициенты $\beta_{j}$ постепенно обнуляются с уменьшением \chi. Происходит отбор признаков, поэтому параметр \chi называют еще ''селективностью''. Параметр \chi "зажимает" вектор коэффициентов \beta, отсюда и название метода {{- --}} лассо (англ. ''LASSO, least absolute shrinkage and selection operator'').
===Сравнение гребниевой и лассо регрессий===
193
правки

Навигация