Изменения

Перейти к: навигация, поиск

Регуляризация

2 байта добавлено, 13:08, 21 января 2020
Эквивалентная вероятностная задача
[[Байесовская классификация | Вероятностная модель данных]] дает возможность по-другому взглянуть на задачу. Пусть <tex>X \times Y</tex> {{---}} является вероятностным пространством. Тогда вместо <tex>g(x_{i}, \beta)</tex> задана совместная плотность распределение объектов и классов <tex>p(x, y|\beta)</tex>.
Для настройки вектора параметров $\beta $ воспользуемся ''принципом максимума правдоподобия'':
:<tex>p(X^l|\beta)=\prod\limits_{i=1}^lp(x_{i},y_{i}|\beta) \rightarrow max_{\beta}</tex>
Удобнее рассматривать логарифм правдоподобия:
193
правки

Навигация