Изменения

Перейти к: навигация, поиск

Активное обучение

777 байт добавлено, 23:55, 2 февраля 2020
Методы выбора сэмплирования
Рассмотрим простой частный случай: пусть имеется выборка точек на отрезке длины $l$, для которых требуется найти пороговый классификатор. Это означает, что заранее известна линейная раздедимость выборки {{---}} то есть существует точка $t$, такая что точки $x < t$ принадлежат одному классу, а $x > t$ {{---}} другому. Наивным решением было бы разбиение отрезка на $k$ равных подотрезков, чтобы отправить оракулу по одной точке из каждого подотрезка и получить верный ответ с точностью $\dfrac{l}{k}$. Гораздо лучшим решением является бинарный поиск, который на каждой итерации сокращает пространство возможных решений вдвое, и необходимая точность $d$ достигается за $\log{\dfrac{l}{d}}$ запросов.
 
=== Максимизация ожидаемого влияния на модель ===
 
Пусть текущая модель имеет параметр $\theta$, который мы стремимся оптимизировать, чтобы уменьшить функцию потерь $L$. Тогда имеет смысл запрашивать те объекты, которые максимизируют влияние на модель (англ. ''Expected Model Change'').  Степень влияния можно оценивать градиентом функционала потерь {{---}} $\nabla_\theta L$. Тогда мера информативности объекта:
 
$\Phi(x) = \sum\limits_y{P(y | x) \cdot || \nabla_\theta L_{+(x, y)} ||}$
== См. также ==
52
правки

Навигация