Изменения

Перейти к: навигация, поиск

Жизненный цикл модели машинного обучения

25 байт добавлено, 21:24, 13 февраля 2020
Нет описания правки
Еще один популярный способ тестирования - A/B-тестирование. Этот метод также называется сплит-тестированием (англ. ''split testing'' ). A/B-тестирование позволяет оценивать количественные показатели работы двух вариантов модели, а также сравнивать их между собой. Чтобы получить статистически значимый результат, очень важно исключить влияние моделей друг на друга.
Все вышеперечисленные тесты намного проще использовать с контейнеризованными приложениями, так как это делает раскрутку реалистичного производственного стека тривиальной.
Мониторинг и оповещение могут быть особенно важны при развертывании моделей. По мере усложнения системы потребуются возможности мониторинга и оповещения, чтобы сообщать, когда прогнозы для конкретной системы выходят за пределы ожидаемого диапазона. Мониторинг и оповещение также могут быть связаны с косвенными проблемами, например, при обучении новой сверточной нейронной сети расходовать ежемесячный бюджет AWS за 30 минут. Также понадобятся панели управления, позволяющие быстро проверить развернутые версии моделей.
51
правка

Навигация