Изменения

Перейти к: навигация, поиск

Порождающие модели

1072 байта добавлено, 15:08, 24 февраля 2020
Явный подход
Во время обучения входящие последовательности представляют собой звуковые волны от примеров записи голоса. После тренировки можно с помощью сети генерировать синтетические фразы. На каждом шагу семплирования значение вычисляется из вероятностного распределения, посчитанного сетью. Затем это значение возвращается на вход и делается новое предсказание для следующего шага.
В моделях [[PixelRNN]]<sup>[на 24.02.20 не создан]</sup> и [[PixelCNN]]<sup>[на 24.02.20 не создан]</sup> строится изображение пиксель за пикселем, слева направо и свер­ху вниз. Каждый пиксель <tex>x_n</tex> порождается из условного распределе­ния <tex>p(x_n \mid x_1, {{...}}, x_{n-1})</tex>
а оно уже моделируется или [[Рекуррентные нейронные сети|рекуррентной сетью] или [[Сверточные нейронные сети|сверточной]].
Модель [[DRAW]]<sup>[на 24.02.20 не создан]</sup> последо­вательно «рисует» картинку с помощью рекуррентной сети, а [[механизм внимания]]<sup>[на 24.02.20 не создан]</sup> помогает сети в данный момент сконцентрироваться на нужной части изображе­ния.
Если хочется явно выразить совсем сложные распределения в порождающих моделях, их приходится приближать более простыми, которые уже, в свою очередь, могут быть выражены явно. Для этого обычно используются [[Вариационный автокодировщик|вариационные мето­ды]].
76
правок

Навигация