Изменения

Перейти к: навигация, поиск

Дополнение к ранжированию

19 байт добавлено, 20:49, 11 апреля 2020
м
Частичное ранжирование
{{Определение
|definition =
[[Бинарное отношение]] <tex><</tex> на множестве <tex>X x \times X</tex>, для некоторых элементов которого определена несравнимость <tex>\sim</tex>,называется '''частичным упорядочиванием''' (англ. ''semiorder''), если оно обладает следующими свойствами:
* [[Рефлексивное отношение|Иррефлексивность]] (англ. ''irreflexivity''): <tex>\forall a \in X:</tex><tex>a \sim a</tex>.
* [[Симметричное отношение|Ассиметричность]] (англ. ''asymmetry''): <tex>\forall a, b \in X:</tex> если <tex>a < b</tex>, то не <tex> b < a </tex>.
=== Сравнения ===
====== '''Вещественная функция''' ======
Частичное ранжирование поддается тому же функциональному подходу к сравнению за тем лишь исключением, что для численных значений объектов вводится некоторая погрешность <tex>\xi</tex>, внутри которой объекты считаются сравнимы, снаружи - нет. Зачастую такую погрешность выбирают нормированной к <tex>1</tex>.
{{Теорема|о частичном упорядочивании
|statement=
Для любого конечного частичного упорядочиванием <tex><\in XxXX\times X</tex> возможно определить такое <tex>\xi</tex> и функционал <tex> u: X \rightarrow Y :</tex> если <tex>a<b</tex>, то <tex>u(a) \le u(b) - \xi</tex> и наоборот.
}}
<!-- Имея заданный функционал и <\xi> возможно использование интервального сравнения, а именно {{---}} объекты считаются сравнимы, если значения их оценок лежат в некоторой окрестности. -->
Ограничения:
:- Если у данного частичного ранжирования существует несчетное множество строго упорядоченных объектов, то невозможно подобрать такую <tex>u</tex>. В противовес, любое конечное частичное ранжирование может быть описано с помощью <tex>u</tex>.
== Сильное ранжирование ==
72
правки

Навигация