Изменения

Перейти к: навигация, поиск

Дополнение к ранжированию

7 байт добавлено, 12:59, 12 апреля 2020
м
Подход
Воспользовавшись методом стохастического градиентного спуска, выбираем на каждой <tex>i-</tex>ой итерации случайным образом запрос <tex>q \in Q</tex> и пару документов из запроса <tex> i\prec j </tex>, получаем итеративную формулу вычисления весов:
<center><tex> w = w + \eta \frac{\sigma }{1 + e(\sigma \langle x_j - x_i,w\rangle)}\cdot (x_j - x_i) </tex></center>
Чтобы перейти к использованию негладких функционалов MAP, NDCD, pFound необходимо домножить <tex>1 + e(\sigma \langle x_j - x_i,w\rangle)</tex> на изменение данного функционала при перестановке местами <tex>x_i</tex> и <tex>x_j</tex> в каждой итерации. Это означает, как изменится веса модели, если в задаче ранжирования поменять местами два документа. Результаты оценки алгоритма с разным функционалом представлены на [[Медиа:LambdaRank.png|рис. рисунке 2]].
'''LambdaRank''' моделирует следующий итеративный процесс:
72
правки

Навигация