32
правки
Изменения
Нет описания правки
#'''[http://sv-journal.org/2015-4/09/index.php?lang=ru POS]''' ''(Pose from Orthography and Scaling)'', аппроксимирующий перспективную проекцию с помощью масштабированной ортогональной проекции и находящий матрицу поворота и вектор сдвига объекта путём решения линейной системы
#'''[https://github.com/opencv/opencv/wiki/Posit POSIT]''' ''(POS with ITerations)'', который использует в цикле аппроксимацию нахождения положения POS для нахождения более хорошей масштабированной ортогональной проекции особых точек, а затем применяет POS к этим точкам, а не к исходным. POSIT сходится к точному решению за несколько итераций.
#'''[https://opencv.org/ OpenCV]''' — библиотека компьютерного зрения широкого назначения с открытым исходным кодом. Основные части библиотеки — интерпретация изображений и алгоритмы машинного обучения. Список возможностей, предоставляемых OpenCV, весьма обширен: интерпретация изображений, калибровка камеры по эталону, устранение оптических искажений, анализ перемещения объекта, определение формы объекта и слежение за объектом, сегментация объекта и др. Нам же интеcтно интереcтно [https://docs.opencv.org/3.1.0/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d solvePnP]
=== SLAM — Simultaneous Localization and Mapping ===
=== Гибридные методы ===
Так как ни один из методов не является безупречным, и все они имеют свои слабые места, наиболее разумно комбинировать различные методы отслеживания. Так инерциальный трекинг (IMU) может обеспечить высокую частоту обновления данных (до 1000 Гц), в то время как оптические методы могут дать стабильную точность в длительные периоды времени (корректирование дрифта).
== Задачи решаемые с помощью ML ==
=== Отслеживание направления взгляда пользователя в браузере ===
Решить подобную задачу не так уж и трудно благодаря JavaScript-библиотеке TensorFlow. В браузере очень легко получить доступ к веб-камере. Если предположить, что в качестве входных данных для нейронной сети будет использоваться всё изображение с камеры, то можно сказать, что оно для этих целей слишком велико. Системе придётся проделать большую работу только для того, чтобы определить то место на изображении, где находятся глаза. Такой подход может хорошо показать себя в том случае, если речь идёт о модели, которую разработчик обучает самостоятельно и развёртывает на сервере, однако если мы говорим об обучении и использовании модели в браузере — это уже чересчур.
Для того чтобы облегчить задачу сети, мы можем предоставить ей лишь часть изображения — ту, которая содержит глаза пользователя [[Файл:Eyes.png |400px|thumb| right| Рис. 4 Процесс выделения глаз.]] и небольшую область вокруг них. Эту область, представляющую собой прямоугольник, окружающий глаза, можно выявить с помощью сторонней библиотеки.
Для обнаружения лица на изображении воспользуемся библиотекой, которая называется clmtrackr.
== Источники информации==
* [https://ru.wikipedia.org/wiki/RFID#Антиколлизионный_механизм_(меток) Радиочастотная идентификация.]
* [https://ru.qwe.wiki/wiki/Augmented_reality Дополненная реальность.]