Изменения
→Определение: style fixes
{{Определение
|definition=
<tex>f</tex> {{---}} '''дифференцируема ''' в точке <tex>x</tex>, если <tex>\Delta y = A(x) \Delta x + o(\Delta x)</tex>, где <tex>o(\Delta x)</tex> — {{---}} такая величина, что <tex>\frac{o(\Delta x)}{\Delta x} \to 0</tex> при <tex>\Delta x \to 0</tex>.Тогда <tex>A(x)\Delta x</tex> называют '''дифференциалом ''' в точке <tex>x</tex>.
Также обозначают <tex>A(x) \Delta x = df(x, \Delta x) = dy</tex>.
}}
|proof=
Если функция дифференцируема, то <tex>\frac{\Delta y}{\Delta x} = A(x) + \frac{o(\Delta x)}{\Delta x}</tex>,
где <tex>\frac{o(\Delta x)}{\Delta x}</tex> — {{---}} бесконечно малая.
}}
Легко понять, что если функция дифференцируема, то она непрерывна в этой точке. Однако, обратное
может быть неверно. Например, функция <tex>y = |x|</tex> в точке <tex>x = 0</tex>. В этой точке у неё нет производной, значит, она не дифференцируема.
== Стандартные арифметические свойства производной ==