111
правок
Изменения
м
→Полное описание архитектуры
Пусть у вас есть набор пар, состоящий из реальных фотографий и их сегментаций. Задача состоит в том, чтобы научиться генерировать из сегментированных изображений реальные.
* Помещается помещается сегментированное изображение в генератор U-Net, и он генерирует некоторый выход. ; * Дальше дальше сгенерированное изображение соединяется с исходным входным сегментированным изображением, и это все идет в PatchGan дискриминатор, который выводит матрицу классификации, состоящую из значений между 0 и 1, которая показывает, насколько реальны или поддельны разные части этого изображения. ;* Затем затем для вычисления ошибки дискриминатора проводится 2 сравнения:
** сравнение матрицы классификации от {объединения сгенерированного изображения с исходным входным сегментированным изображением} с матрицей из всех 0;
** матрицы классификация от {объединения реального изображения с исходным входным сегментированным изображением } с матрицей из всех 1;
* Затем затем для вычисления ошибки генератора проводится сравнение матрицы классификации от {объединения сгенерированного изображения с исходным входным изображением} с матрицей из всех 1, которое считается с помощью BCE Loss, которое впоследствии суммируется с попиксельным сравнением реального изображения со сгенерированным, домноженным на <tex>\lambda</tex>.;
[[File:Pix2pix-UNet-128-GAN-network-architecture.png|700px|center|thumb|Архитектура Pix2Pix.]]