104
правки
Изменения
→Кратковременные астрономические явления
=== Изучение астрономических явлений===
==== Кратковременные астрономические явления ====
Ввиду невозможности круглосуточно наблюдать за данными, поступающими с телескопов, вполне вероятной является возможность пропустить или не заметить появление сверхновой или активность [https://ru.wikipedia.org/wiki/Переменная_звезда переменной звезды]. Как следствие, естественной целью оказывается обработка таких событий в автоматическом режиме. Для классификации астрономических явлений необходимо иметь данные о каком-то участке неба на протяжении какого-то времени. Существуют два подхода, связанные с обработкой последовательностей изображений неба, связанные с машинным обучением:* Закодировать изменения во времени при помощи признаков искусственного объекта, после чего можно обучить классификатор на таких объектах, и результаты получать путем кодирования данных в объекты такого же типа. Классификатор может быть любым, к примеру, можно использовать случайный лес<ref>Bloom, J. S., Richards, J. W., Nugent, P. E., et al.2012, PASP, 124, 1175</ref>* Использовать алгоритмы, способные обрабатывать последовательности объектов, например, [[ Рекуррентные нейронные сети | рекуррентные нейронные сети ]], или, в частности, [[ Долгая краткосрочная память | LSTM ]]<ref>arXiv:1902.03620 [astro-ph.HE]</ref>, которые можно обучить на нескольких последовательных результатах измерения излучения участка неба. В вышеупомянутой работе, к примеру, объектами являются данные о гамма-излучении на протяжении 20 временных интервалов.[[Файл:LSTMforTransients|600px|thumb|center|Архитектура рекуррентной нейронной сети для классификации кратковременных событий]]
[[Файл:Galaxy star features.png|300px|thumb|right|Список признаков объекта, использующийся в классификации звезд и галактик]]
[[ Дерево решений и случайный лес | Случайные леса ]] (англ. ''random forest'') используются для решения задач классификации и регрессии. В пример можно привести следующие исследования: