Изменения

Перейти к: навигация, поиск

Компьютерное зрение в микроскопии

1 байт добавлено, 21:58, 14 января 2021
Задачи компьютерного зрения в микроскопии
Особенностью данных микроскопии является разный масштаб ядер на изображениях, поэтому в сеть подаются не только исходные изображения, а еще и уменьшенные и увеличенные в 2 раза. Такой подход частично решает проблему влияния существенно различающегося масштаба и получил название многомасштабной сети глубокой остаточной агрегации MDRAN.
== Улучшение качества изображений ==
[[Файл:Autofocus cnn.png|right|450px|thumb|(a) Архитектура сверточной нейронной сети для предсказывания положения фокуса микроскопа из [https://www.nature.com/articles/s41598-018-25458-w/ статьи].
(b) Примеры изображений с разным фокусным расстоянием.]]
Зачастую изображения, полученные с помощью микроскопии, не имеют достаточно хорошее для дальнейшей работы качество. Сверточные сети, которые улучшают качество уже имеющихся снимков, не имеют отличий, связанных со специфичностью изображений.
 
Гораздо более интересная задача компьютерного зрения состоит в том, чтобы сразу получать более четкие изображения. При покадровой съемке длительного непрерывного процесса необходимо постоянно следить за положением фокуса микроскопа, чтобы не получать размытые изображения. Процесс выставления фокуса можно автоматизировать, построив сеть, которая будет предсказывать нужное положение. Эту задачу можно свести к задаче классификации изображений по фокусному расстоянию во время съемки. Для ее решения используется сверточная сеть, которая состоит из двух блоков свертки и двух полносвязных блоков для классификации.
 
=== Восстановление изображений ===
Трехмерная флуоресцентная микроскопия является важным инструментом для современных исследований, но ее более широкому применению препятствует рассеяние света биологическими образцами. В основе подхода, который способен восстановить размытое и рассеянное светом трехмерное изображение глубоких тканей, лежит сеть ScatNet.
 
В течение каждой эпохи обучения ScatNet в основном учится, как лучше восстанавливать высококачественные изображения из размытых входных данных. Сгенерированный промежуточный результат для каждой эпохи сравнивается с данными фиксированной метки для оптимизации функции потерь сети. ScatNet способствует простому и быстрому восстановлению изображений и не требует трудоемких ручных операций.
 
Такой подход позволяет с помощью вычислений увеличить глубину визуализации изображений трехмерной флуоресцентной микроскопии без добавления сложной оптики или моделей оптического рассеяния, так как основан только на мощных возможностях прогнозирования сверточной нейронной сети.
 
Такая сверточная сеть показывает большую точность, чем группа людей-экспертов. По сравнению с другими подходами к автофокусировке, сеть не требует физической калибровки и устойчива к шуму, оптическим артефактам и особенностям, отличным от ячеек<ref>[https://www.nature.com/articles/s41598-018-25458-w/ Ling Wei— Reconstructing cell cycle and disease progression using deep learning, 2018]</ref>.
== Детекция клеток ==
Во многих биологических экспериментах необходимо уметь детектировать клетки, за которыми ведется наблюдение, понимать сколько их, как они расположены относительно друг друга. Для решения этих задач в компьютерном зрении используется несколько разных подходов. Одни используют сверточные сети, чтобы предсказывать карту плотности, другие основаны на построении деревьев максимально устойчивых экстремальных областей. Вне зависимости от реализации, методы детекции клеток направлены на оценку количетсва клеток и учитывают перекрывания, неравномерность распредления клеток и другие факторы, специфичные для микроскопических изображений.
Необходимо помнить, что MIST был разработан для склеивания микроскопических изображений, полученных с помощью механического предметного столика, который перемещает образец по повторяющейся сетке, так что это накладывает ограничение на его использование.
 
== Улучшение качества изображений ==
[[Файл:Autofocus cnn.png|right|450px|thumb|(a) Архитектура сверточной нейронной сети для предсказывания положения фокуса микроскопа из [https://www.nature.com/articles/s41598-018-25458-w/ статьи].
(b) Примеры изображений с разным фокусным расстоянием.]]
Зачастую изображения, полученные с помощью микроскопии, не имеют достаточно хорошее для дальнейшей работы качество. Сверточные сети, которые улучшают качество уже имеющихся снимков, не имеют отличий, связанных со специфичностью изображений.
 
Гораздо более интересная задача компьютерного зрения состоит в том, чтобы сразу получать более четкие изображения. При покадровой съемке длительного непрерывного процесса необходимо постоянно следить за положением фокуса микроскопа, чтобы не получать размытые изображения. Процесс выставления фокуса можно автоматизировать, построив сеть, которая будет предсказывать нужное положение. Эту задачу можно свести к задаче классификации изображений по фокусному расстоянию во время съемки. Для ее решения используется сверточная сеть, которая состоит из двух блоков свертки и двух полносвязных блоков для классификации.
 
=== Восстановление изображений ===
Трехмерная флуоресцентная микроскопия является важным инструментом для современных исследований, но ее более широкому применению препятствует рассеяние света биологическими образцами. В основе подхода, который способен восстановить размытое и рассеянное светом трехмерное изображение глубоких тканей, лежит сеть ScatNet.
 
В течение каждой эпохи обучения ScatNet в основном учится, как лучше восстанавливать высококачественные изображения из размытых входных данных. Сгенерированный промежуточный результат для каждой эпохи сравнивается с данными фиксированной метки для оптимизации функции потерь сети. ScatNet способствует простому и быстрому восстановлению изображений и не требует трудоемких ручных операций.
 
Такой подход позволяет с помощью вычислений увеличить глубину визуализации изображений трехмерной флуоресцентной микроскопии без добавления сложной оптики или моделей оптического рассеяния, так как основан только на мощных возможностях прогнозирования сверточной нейронной сети.
 
Такая сверточная сеть показывает большую точность, чем группа людей-экспертов. По сравнению с другими подходами к автофокусировке, сеть не требует физической калибровки и устойчива к шуму, оптическим артефактам и особенностям, отличным от ячеек<ref>[https://www.nature.com/articles/s41598-018-25458-w/ Ling Wei— Reconstructing cell cycle and disease progression using deep learning, 2018]</ref>.
= См. также =
462
правки

Навигация