100
правок
Изменения
→CGAN (Conditional Generative Adversarial Nets)
==CGAN (Conditional Generative Adversarial Nets)==
[[File:CGAN_architecture.png|450px|thumb|(Рисунок 21) Архитектура CGAN. Источник: https://arxiv.org/pdf/1411.1784.pdf]]
'''Условные порождающие состязательные сети''' (англ. ''Conditional Generative Adversarial Nets, CGAN'') $-$ это модифицированная версия алгоритма GAN, которая может быть сконструирована при помощи передачи дополнительных данных '''y''', являющихся условием для генератора и дискриминатора. '''y''' может быть любой дополнительной информацией, например, меткой класса, изображением или данными из других моделей, что может позволить контролировать процесс генерации данных. Например, можно подавать параметр '''y''', как условие на класс для генерации чисел, похожих на MNIST. Создание таких картинок, в случае передачи картинки в качетсве '''y''' является [[:Задача трансляции изображений|задачей трансляции изображений]]. Пример работы ''CGAN'' на датасете ''MNIST'' с метками классов представленных в виде [[:Векторное представление слов|''one-hot'']] векторов <ref>[https://arxiv.org/pdf/1411.1784.pdf CGAN]</ref> (Рисунок 32)
[[File:CGAN_generated.png|450px|thumb|right|(Рисунок 3) Цифры, сгенерированные с помощью CGAN. Источник: https://arxiv.org/pdf/1411.1784.pdf]]
Как уже было упомянуто на вход генератора и дискримантора из GAN подается дополнительная информация '''y''', например в случае с многослойными перецептронами условие может быть представлено дополнительным входным слоем.(Рисунок 1)
В генераторе априорная вероятность шума <tex>p_{z}(z)</tex> и условие <tex>y</tex> комбинируются в объединённое скрытое представление, а состязательная тренирующая модель (Обе сети пытаются оптимизировать целевую функцию или функцию потерь. Когда дискриминатор меняет свое поведение, то и генератор меняет, и наоборот) предоставляет достаточно свободы в том как это представление составляется.<ref>[https://arxiv.org/pdf/1207.4404.pdf Yoshua Bengio, Gre ́goire Mesnil, Yann Dauphin and Salah Rifai {{---}} Better Mixing via Deep Representations ]</ref>
В дискриминаторе '''x''' и '''y''' представлены как входные параметры. (Рисунок 2)