Изменения

Перейти к: навигация, поиск

Генерация изображения по тексту

14 байт добавлено, 22:44, 15 января 2021
м
LayoutVAE: "и т.д." -> "и так далее..."
<div class="oo-ui-panelLayout-scrollable" style="display: block; vertical-align:middle; height: auto; width: auto;">[[Файл:LayoutVAE.png|thumb|center|x350px|Рисунок 25.<ref name="LayoutVAE"/> Архитектура LayoutVAE.]]<div>
В статье<ref name="LayoutVAE">[https://openaccess.thecvf.com/content_ICCV_2019/papers/Jyothi_LayoutVAE_Stochastic_Scene_Layout_Generation_From_a_Label_Set_ICCV_2019_paper.pdf LayoutVAE: Stochastic Scene Layout Generation From a Label Set]</ref> были предложены фреймворки и структуры моделей, взаимодействующие с LayoutVE, такие как: <b>PNP-Net</b> {{---}} фреймворк вариационного автокодировщика для генерации изображения абстрактной сцены из текстовой программы, полностью описывающей её (помимо того, что это {{---}} стохастическая модель для генерации, она была протестирована на синтетических наборах данных с малым числом классов); <b>LayoutGAN</b> {{---}} модель, основанная на [[Generative Adversarial Nets (GAN) | генеративных состязательных сетях]], генерирующая макеты графических элементов (прямоугольники, треугольники, и так далее); VAE-базированный фреймворк, кодирующий объект и информацию о макете 3D-сцен в помещении в скрытом коде ; и ттак далее.д..
Обучение генеративных моделей нужно, чтобы предсказать разнообразные, но правдоподобные наборы ограничивающих рамок, учитывая набор меток в качестве входных данных. Рамки в наборе представлены верхними левыми координатами, шириной и высотой <tex>i</tex>-й ограничивающей рамки категории <tex>k</tex>. LayoutVAE естественным образом декомпозируется на модель для предсказания количества для каждой заданной метки {{---}} <b>CountVAE</b> {{---}} и другая для предсказания местоположения и размера каждого объекта {{---}} <b>BBoxVAE</b>.
81
правка

Навигация