Изменения

Перейти к: навигация, поиск

Карта глубины

24 байта добавлено, 22:07, 19 января 2021
Нет описания правки
[[Файл:Stereo.png|thumb|300px| рис. 2. Результат построения карты смещений по 2 картинкам.]]
После того , как изображения '''ректифицированы''', выполняют поиск соответствующих пар точек. Для каждого пикселя одной картинки с координатами <math>(x_0, y_0)</math> выполняется поиск пикселя на другой картинке. При этом предполагается, что пиксель на второй картинке должен иметь координаты <math>(x_0 - d, y_0)</math>, где d — величина называемая смещением. Поиск соответствующего пикселя выполняется путем вычисления максимума функции отклика, в качестве которой может выступать, например, [[Корреляция случайных величин|корреляция]] окрестностей пикселей. В результате получается карта смещений, пример которой приведен на рис. 2.
Собственно значения глубины обратно пропорциональны величине смещения пикселей.
* "Ищем реальную карту глубины для обучения": с помощью карты смещений, можем построить карту глубины <math>y</math> вышеописанным способом. Также допустимы другие способы построения карты глубины для обучения нейронной сети.
* '''Функция потерь''': определим [[Функция потерь и эмпирический риск|функцию потерь]], для предсказанной карты <math>\hat y</math>, <math>d_i = log( y_i) - log (\hat y_i)</math>, <math>\lambda \in [0, 1]</math> и <math>n </math> - количество пикселей. Где <math>y_i</math> и <math>\hat y_i</math> это гиперпараметр <math>\lambda</math>, который нужен для того, чтобы функция потерь меньше росла при большом количестве пикселей, предсказание для которых достаточно близко к реальному. Например, если <math>\lambda = 0</math>, то мы просто придём к оптимизации в L2. <ref name="loss">David Eigen, Christian Puhrsch, Rob Fergus "Depth Map Prediction from a Single Imageusing a Multi-Scale Deep Network" стр. 5</ref>
<math>L(y, \hat y) = \frac{1}{n} \sum\limits_{i} d^2_i - \frac{\lambda}{n^2}(\sum\limits_{i} d_i)^2</math>
* '''Обучение сверточной свёрточной нейронной сети''': далее идёт обычное обучение нейронной сети по карте различий путем обратного распространения ошибки, оптимизируя заданную выше функцию потерь.
В итоге, по обученной нейронной сети мы можем создавать карту глубины, не проводя расчётов для поиска карт смещения и имея только изображение объекта или пространства. <ref name="cnn">Реализация, основанная на свёрточных нейронных сетях [https://www.kaggle.com/kmader/cnn-for-generating-depth-maps-from-rgb-images]</ref>
Также возможно использование усложнённых архитектур свёрточных нейронных сетей типа '''DenseNet'''<ref name=""> Ibraheem Alhashim, Peter Wonka "High Quality Monocular Depth Estimation via Transfer Learning" [https://arxiv.org/pdf/1812.11941.pdf]</ref>.
'''DenseNet'''<ref name="DenseNet">Оригинальная статья описывающая DenseNet [https://arxiv.org/abs/1611.09326]</ref> {{---}} это свёрточная нейронные сеть, в которой выход каждого из слоев подаётся на вход всем слоям, которые лежат лежащих ниже.
=== Построение с помощью капсульных нейронных сетей ===
[[Файл:capsnet.jpg|thumb|400px| рис. 3. Структура капсульной нейронной сети <ref name="img"> "Design and Investigation of Capsule Networks for Sentence Classification" Figure 2. [https://www.mdpi.com/2076-3417/9/11/2200/htm]</ref>.]]
"Капсульная нейронная сеть" состоит из капсул или групп нейронов, чтобы идентифицировать закономерности в изображении. Эта информация поступает в виде векторов, содержащих ориентацию и положение узоров на изображении, которое затем принимается капсулами более высокого уровня. Капсулы более высокого уровня обрабатывают эту информацию из нескольких капсул более низкого уровня и впоследствии выдают прогноз. Капсулы одного уровня не имеют связей друг с другом и вычисляют информацию независимо друг от друга. Капсулы образуется путем разделения выходных данных из сворачивающего слоя. Мы делим наш трехмерный вектор на капсулы методом "нарезания" таким образом, чтобы в каждой капсуле была информация о каждом пикселе, т.е. по 3 трехмерной координате.
Состояние нейронов капсульной нейронной сети внутри изображения фиксирует свойство области или объекта внутри изображения: его положение и ориентацию.
Анонимный участник

Навигация