Изменения
CatBoost
,Дополнение
Практически любой современный метод на основе градиентного бустинга работает с числовыми признаками. Если у нас в наборе данных присутствуют не только числовые, но и категориальные признаки (англ. ''categorical features''), то необходимо переводить категориальные признаки в числовые. Это приводит к искажению их сути и потенциальному снижению точности работы модели.
Именно поэтому было важно разработать алгоритм, который умеет работать не только с числовыми признаками, но и с категориальными напрямую, закономерности между которыми этот алгоритм будет выявлять самостоятельно, без ручной «помощи».
CatBoost {{---}} библиотека для градиентного бустинга, главным преимуществом которой является то, что она одинаково хорошо работает «из коробки» как с числовыми признаками, так и с категориальными. Программное обеспечение разработано по методологии SCRUM.
Документацию по CatBoost можно найти на сайте<ref>[https://tech.yandex.com/catboost/doc/dg/concepts/about-docpage/ Документация CatBoost]</ref>.