Изменения
Нет описания правки
# Обозначение outtree означает, что граф зависимостей представляет собой исходящее дерево: каджая работа зависит не более чем от одной другой. $1 | outtree | \sum w_iC_i$
# Обозначение intree означает, что граф зависимостей представляет собой входящее дерево: от каждой работы зависит не более одной другой. $1 | intree | \sum w_iC_i$
# $P | pmtn, r_i | C_{max}$
# $P | pmtn, r_i | L_{max}$
# $Q | pmtn, r_i | C_{max}$
# $P | p_i = p, r_i, d_i | \sum C_i$ за $O(n^3 \log n)$ (бонус за $O(n^3 \log\log n)$)
# $P | p_i = 1 | \sum w_iU_i$ - доведите доказательство с пары до конца
# $P | p_i = 1 | \sum w_iC_i$
# $P | p_i = 1, pmtn | \sum w_iC_i$
# $Q | pmtn | \sum C_i$
# $Q | pmtn | \sum f_i$ (напомним, что f_i - произвольная неубывающая функция, может быть своя у каждой работы)
# $Q | pmtn | f_{max}$
# $P2 | p_i = 1, prec, r_i | \sum C_i$ за $O(n^9)$
# Сведите задачу $R|pmtn|C_{max}$ к задаче линейного программирования.
# $P|intree, p_i=1|L_{max}$