Изменения

Перейти к: навигация, поиск

Исчисление доменов и его реляционная полнота

958 байт добавлено, 22:29, 19 декабря 2021
Реляционная полнота исчисления доменов
==Реляционная полнота исчисления доменов==
Выразим базис реляционной алгебры в исчислении доменов, тем самым докажем реляционную полноту исчисления доменов:
====Проекция $\pi_{A_1, ..., A_n}(R)$====
====Фильтр $σ_θ(R)$====
Выбираем только такие наборы значений $A_1$...$A_n$, которые есть в исходном отношении R и удовлетворяют условию θ
$A_1$, ..., $A_n$ <font color=blue>from</font> $R$ <font color=blue>where</font> $R$<font color=red>{</font>$A_1$ = $A_1$, ..., $A_n$ = $A_n$<font color=red>}</font> ∧ $θ$
====Объединение $R_1 ∪ R_2$====
Выбираем только такие наборы значений $A_1$...$A_n$, что хотя бы в одном из отношений есть соответствующий кортеж
$A_1$, ..., $A_n$ <font color=blue>where</font> $R_1$<font color=red>{</font>$A_i$ = $A_i$<font color=red>}</font> ∨ $R_2$<font color=red>{</font>$A_i$ = $A_i$<font color=red>}</font>
====Разность $R_1 ∖ R_2$====
Выбираем только такие наборы значений $A_1$...$A_n$, что соответствующий кортеж есть в $R_1$, но нет в $R_2$
$A_1$, ..., $A_n$ <font color=blue>where</font> $R_1$<font color=red>{</font>$A_i$ = $A_i$<font color=red>}</font> ∧ $¬R_2$<font color=red>{</font>$A_i$ = $A_i$<font color=red>}</font>
====Декартово произведение $R_1 × R_2$====
Выбирает наборы значений $A_1$, ..., $A_n$, $B_1$, ..., $B_m$ такие, что $A_1$...$A_n$ есть в $R_1$, а $B_1$...$B_n$ есть в $R_2$
$A_1$, ..., $A_n$, $B_1$, ..., $B_m$ <font color=blue>where</font> $R_1$<font color=red>{</font>$A_i$ = $A_i$<font color=red>}</font> ∧ $R_2$<font color=red>{</font>$B_j$ = $B_j$<font color=red>}</font>
====Естественное соединение $R_1 ⋈ R_2$====
$A_1$, ..., $A_n$, $B_1$, ..., $B_m$, $C_1$, ..., $C_l$ <font color=blue>where</font> $R_1$<font color=red>{</font>$A_i$ = $A_i$, $B_j$ = $B_j$<font color=red>}</font> ∧ $R_2$<font color=red>{</font>$C_k$ = $C_k$, $B_j$ = $B_j$<font color=red>}</font>
Анонимный участник

Навигация