Изменения
Нет описания правки
# Петя собирается смотреть серию матчей финала Флатландской хоккейной лиги. В финале две команды играют до 5 побед, ничьих не бывает, таким образом максимум в финале будет не более 9 матчей. Вася рассказал Пете, что всего в финале было 7 матчей. Петя считает матч интересным, если перед его просмотром он не знает, кто выиграет финал. Пусть все возможные последовательности исходов матчей, удовлетворяющих описанным условиями, равновероятны. Какова вероятность, что будет хотя бы 4 интересных матча?
# Петя собирается смотреть серию матчей финала Флатландской хоккейной лиги. В финале две команды играют до 5 побед, ничьих не бывает, таким образом максимум в финале будет не более 9 матчей. Вася рассказал Пете, что всего в финале было 7 матчей. Петя считает матч зрелищным, если перед его просмотром он не знает, кто его выиграет. Пусть все возможные последовательности исходов матчей, удовлетворяющих описанным условиями, равновероятны. Какова вероятность, что будет хотя бы 5 зрелищных матчей?
# Найдите распределение и математическое ожидание следующей случайной величины: число бросков нечестной монеты до первого выпадения 1.
# Найдите распределение и математическое ожидание следующей случайной величины: число бросков честной монеты до второго выпадения 1.
# Найдите математическое ожидание числа инверсий в перестановке чисел от 1 до $n$
# Найдите математическое ожидание числа подъемов (таких $i$, что $a[i] < a[i + 1]$) в перестановке чисел от 1 до $n$
# Найдите математическое ожидание числа троек $i$, $j$, $k$, где $i < j < k$ и $a[i] < a[j] < a[k]$ в перестановке чисел от 1 до $n$
# Верно ли, что если $\xi$ и $\eta$ - независимые случайные величины, то таким будут и $f(\xi)$ и $g(\eta)$ для любых функций $f$ и $g$? Достаточно доказать для конечных вероятностных пространств.
# Постройте случайную величину, имеющую конечное математическое ожидание и бесконечную дисперсию.
# Постройте случайную величину, имеющую бесконечное математическое ожидание и конечную дисперсию.
# Рассмотрим игру. Колода из 52 карт, 26 красных и 26 черных, тасуется, так что все порядки следования карт оказываются равновероятными. Затем карты извлекаются по одной и колоды в открытую до того момента, пока не игрок не скажет ""стоп"". После этого открывается еще одна карта, если она красная, то игрок выигрывает. Какая стратегия максимизирует вероятность выигрыша игрока?
# Из перемешанной стандартной колоды из 52 карт выкладываются карты по одной. Найдите матожидание числа карт, которое будет выложено до первого выложенного туза.
# Среди всех двоичных строк длины $n$ с $k$ единицами и $n-k$ нулями равновероятно выберем случайную. Найдите математическое ожидание числа вхождений подстроки ""11"".
# 10 шаров раскладываются по 5 корзинам. Для каждого шара равновероятно выбирается, в какую корзину он помещается. Какое математическое ожидание числа пустых корзин?
# 10 шаров раскладываются по 5 корзинам. Для каждого шара равновероятно выбирается, в какую корзину он помещается. Какое математическое ожидание числа корзин, содержащих ровно один шар?
# Докажите, что минимум $E(X-\alpha)^2$ достигается при $\alpha = EX$.
# Предложите метод генерации случайной перестановки порядка $n$ с равновероятным распределением всех перестановок, если мы умеем генерировать равномерно распределенное целое число от 1 до $k$ для любых небольших $k$ ($k = O(n)$).
# Дает ли следующий метод равномерную генерацию всех перестановок? ""p = [1, 2, ..., n]; for i from 1 to n: swap(p[i], p[random(1..n)] )""
# Дает ли следующий метод равномерную генерацию всех перестановок? ""p = [1, 2, ..., n]; for i from 1 to n: swap(p[random(1..n)], p[random(1..n)] )""
# Рассмотрим следующий метод генерации случайной перестановки. Применим алгоритм из задания 31, а затем к получившейся перестановке верный алгоритм из задания 30. Будет ли полученное распределение на перестановках равномерным?# Рассмотрим следующий метод генерации случайной перестановки. Применим верный алгоритм из задания 30, а затем к получившейся перестановке алгоритм из задания 31. Будет ли полученное распределение на перестановках равномерным?
# Предложите метод генерации случайного сочетания из $n$ по $k$ с равновероятным распределением всех сочетаний, если мы умеем генерировать равномерно распределенное целое число от 1 до $t$ для любых небольших $t$ ($t = O(n)$)
# Предложите метод генерации случайного сочетания из $n$ по $k$ с равновероятным распределением всех сочетаний, если мы умеем генерировать равномерно распределенное целое число от 1 до $t$ для любых небольших $t$ ($t = O(n)$), использующий $O(k)$ времени и памяти.