Изменения
Нет описания правки
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
|+
|-align="center"
|'''НЕТ ВОЙНЕ'''
|-style="font-size: 16px;"
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
''Антивоенный комитет России''
|-style="font-size: 16px;"
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
|-style="font-size: 16px;"
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
|}
Существует класс эволюционных алгоритмов, основывающихся на [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем|индикаторах]] для решения задачи [[Задача многокритериальной оптимизации. Multiobjectivization|многокритериальной оптимизации]].
В данной статье приводится доказательство правомерности использования индикатора [[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Гиперобъем|гиперобъема]] в качестве максимизируемого значения из работы <ref>[http://www.mpi-inf.mpg.de/homepage/tfried/paper/2010GECCO_Hyp.pdf Friedrich T., Bringmann K. - The Maximum Hypervolume Set Yields Near-optimal Approximation]</ref>.