Изменения

Перейти к: навигация, поиск

Активное обучение

2309 байт убрано, 19:06, 4 сентября 2022
м
rollbackEdits.php mass rollback
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
|+
|-align="center"
|'''НЕТ ВОЙНЕ'''
|-style="font-size: 16px;"
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
''Антивоенный комитет России''
|-style="font-size: 16px;"
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
|-style="font-size: 16px;"
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
|}
 
[[Файл:Al_russian_2.png | справа | 480пкс | мини | Схема отбора из выборки в активном обучении]]
=== Максимизация ожидаемого влияния на модель ===
Пусть текущая модель имеет параметр $\theta$, который мы стремимся оптимизировать, чтобы уменьшить функцию потерь $L$. Тогда имеет смысл запрашивать те объекты, которые максимизируют влияние на модель (англ. ''expected model change''). Степень  Степень влияния можно оценивать градиентом функционала потерь {{---}} $\nabla_\theta L$. Тогда мера информативности объекта:
$\Phi(x) = \sum\limits_y{P(y | x) \cdot || \nabla_\theta L_{+(x, y)} ||}$.
Здесь $L_{+(x, y)}$ обозначает функцию потерь на выборке дополненной парой $(x, y)$. При этом естественно предполагать, что на каждой итерации модель обучена, и параметр  $\theta$ оптимален, что значит, что $\nabla_\theta L \simeq 0$. Заметим также, что если $L$ линейно зависит от одномерных функций потерь по каждому объекту, например $L$ {{---}} среднее квадратичное отклонение, тогда остается посчитать градиент градиент $L$ всего в одной точке {{---}} $x$, поскольку $L_{+(x, y)} = L_T + L_{(x, y)} \simeq L_{(x, y)}$ вместо подсчета $L$ на всем тренировочном множестве $T$.
=== Ожидаемое сокращение ошибки ===
У рассмотренных выше стратегий отбора есть недостатки: в пространстве $X$ могут оставаться неисследованные области, вследствие чего снижается качество и увеличивается время обучения. Эвристикой, позволяющей решить эту проблему, является выбор случайных объектов, комбинированный с детерминированным выбором по степени информативности.
Есть два алгоритма обертки над любой стратегией отбора  {{---}} алгоритм $\varepsilon$-active и алгоритм экспоненциального градиента (англ. ''exponential gradient''). Алгоритм $\varepsilon$-active {{---}} это базовый вариант, в котором предлагается на каждой итерации производить следующие шаги:
# Выбрать неразмеченный объект $x$ случайно с вероятностью $\varepsilon$ или $x = arg \max\limits_{u \in X}{\Phi(u)}$ с вероятностью  $1 - \varepsilon$. <br> Здесь $\Phi(u)$ обозначает степень неуверенности на объекте $u$.# Запросить оракула на объекте $x$ и получить его метку метку $y$.
# Дообучить текущую модель на еще одном примере $\langle x, y \rangle$.
* [[Общие понятия]]
== Источники информации информации ==
* [https://www.cs.cmu.edu/~tom/10701_sp11/recitations/Recitation_13.pdf Yi Zhang. Active Learning]
1632
правки

Навигация