245
правок
Изменения
Новая страница: «# Найдите производящую функцию для последовательности $0 \cdot 1, 1 \cdot 2, 2 \cdot 3, 3 \cdot 4, \ldots, (n - 1)…»
# Найдите производящую функцию для последовательности $0 \cdot 1, 1 \cdot 2, 2 \cdot 3, 3 \cdot 4, \ldots, (n - 1) \cdot n, \ldots$.
# Найдите производящую функцию для последовательности $1^2, 2^2, 3^2, \ldots, n^2, \ldots$.
# Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(t)=a_0 + a_1t + a_2t^2 + \ldots$. Найдите производящую функцию последовательности $a_0 + a_1, a_1 + a_2, \ldots, a_k+a_{k+1}, \ldots$
# Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(t)=a_0 + a_1t + a_2t^2 + \ldots$. Найдите производящую функцию последовательности $a_0, a_0 + a_1, a_0 + a_1 + a_2, \ldots, \sum\limits_{i=0}^ka_i,\ldots$
# Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(t) = a_0 + a_1t + a_2t^2 + \ldots$. Найдите производящую функцию последовательности $a_0, a_1b, a_2b^2, \ldots, a_kb^k, \ldots$
# Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(t)=a_0 + a_1t + a_2t^2 + \ldots$. Найдите производящую функцию последовательности $a_0, 0, a_1, 0, a_2, 0, a_3 \ldots$
# Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(t) = a_0 + a_1t + a_2t^2 + \ldots$. Найдите производящую функцию последовательности $a_0, a_2, a_4, a_6, \ldots$
# Найдите производящую функцию для последовательности гармонических чисел $H_n = 1+1/2+\ldots+1/n$.
# Формальный степенной ряд $\exp(t) = e^t$ определен как $e^t=1+\frac{1}{1!}t+\frac{1}{2!}t^2+\frac{1}{3!}t^3+\ldots+\frac{1}{n!}t^n+\ldots$. Логично, что $e^{-t}=1-\frac{1}{1!}t+\frac{1}{2!}t^2-\frac{1}{3!}t^3+\ldots+(-1)^n\frac{1}{n!}t^n+\ldots$. Докажите, используя определение умножения для степенных рядов, что $e^t e^{-t}=1$.
# Определим $\alpha \choose n$ для любого $\alpha$, как $\frac {\alpha (\alpha - 1) \ldots (\alpha - n + 1)}{n!}$. Найдите простое выражение для ${-n} \choose k$ для натуральных $n$ и $k$. Опишите коэффициенты производящей функции $\frac {1}{(1-t)^n}$.
# Формальный степенной ряд $\cos(t)$ определен как $\sum_{n=0}^{\infty} (-1)^n \frac {t^{2n}}{(2n)!}$, а $\sin(t)$ определен как $\sum_{n=0}^{\infty} (-1)^n \frac {t^{2n+1}}{(2n+1)!}$. Докажите, что $\sin^2(t) + \cos^2(t) = 1$.
# Докажите, что $\sin(2t) = 2 \sin(t) \cos(t)$.
# Найдите последовательность вещественных чисел $a_0, a_1, \ldots, a_n, \ldots$, удовлетовряющую условию $a_0=1$, $\sum\limits_{k=0}^n a_ka_{n-k} = 1$.
# Пусть $B(t) = b_1 t + b_2 t^2 + b_3 t^3 + \ldots + b_n t^n + \ldots$, причем $b_1 \ne 0$. Пусть формальные степенные ряды $A(t)$ и $C(t)$ таковы, что $A(B(t)) = t$, $B(C(t))=t$. Докажите, что $A(t)=C(t)$. Этот ряд называется обратным к $B(t)$, обозначается как $B^{-1}(t)$.
# Будем называть нулем степенной ряд $0(t) = 0 + 0t + 0t^2 + \ldots$. Докажите, что если $A(t) \ne 0(t)$, $B(t) \ne 0(t)$, то $A(t)B(t) \ne 0(t)$.
# Докажите, что $(A(t)B(t))' = A'(t)B(t) + A(t)B'(t)$.
# Докажите, что $\int(A'(t)B(t) + A(t)B'(t)) = A(t)B(t) - A(0)B(0)$.
# Докажите, что $(A(B(t))'=A'(B(t))\cdot B'(t)$
# Формальный степенной ряд $(1+s)^\alpha$ определен как $(1+s)^\alpha=1+\frac{\alpha}{1}s+\frac{\alpha(\alpha-1)}{1 \cdot 2}s^2+\ldots+\frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{1 \cdot 2 \cdot\ldots\cdot n}s^n+\ldots$. Докажите, что $(1+s)^{1/2}(1+s)^{1/2}=1+s$.
# Докажите, что $(1+s)^\alpha(1+s)^\beta=(1+s)^{\alpha+\beta}$ для рациональных $\alpha$ и $\beta$.
# Докажите, что $(1+s)^\alpha(1+s)^\beta=(1+s)^{\alpha+\beta}$.
# Найдите производящую функцию для последовательности $1^2, 2^2, 3^2, \ldots, n^2, \ldots$.
# Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(t)=a_0 + a_1t + a_2t^2 + \ldots$. Найдите производящую функцию последовательности $a_0 + a_1, a_1 + a_2, \ldots, a_k+a_{k+1}, \ldots$
# Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(t)=a_0 + a_1t + a_2t^2 + \ldots$. Найдите производящую функцию последовательности $a_0, a_0 + a_1, a_0 + a_1 + a_2, \ldots, \sum\limits_{i=0}^ka_i,\ldots$
# Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(t) = a_0 + a_1t + a_2t^2 + \ldots$. Найдите производящую функцию последовательности $a_0, a_1b, a_2b^2, \ldots, a_kb^k, \ldots$
# Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(t)=a_0 + a_1t + a_2t^2 + \ldots$. Найдите производящую функцию последовательности $a_0, 0, a_1, 0, a_2, 0, a_3 \ldots$
# Последовательность $a_0, a_1, a_2, \ldots, a_k, \ldots$ имеет производящую функцию $A(t) = a_0 + a_1t + a_2t^2 + \ldots$. Найдите производящую функцию последовательности $a_0, a_2, a_4, a_6, \ldots$
# Найдите производящую функцию для последовательности гармонических чисел $H_n = 1+1/2+\ldots+1/n$.
# Формальный степенной ряд $\exp(t) = e^t$ определен как $e^t=1+\frac{1}{1!}t+\frac{1}{2!}t^2+\frac{1}{3!}t^3+\ldots+\frac{1}{n!}t^n+\ldots$. Логично, что $e^{-t}=1-\frac{1}{1!}t+\frac{1}{2!}t^2-\frac{1}{3!}t^3+\ldots+(-1)^n\frac{1}{n!}t^n+\ldots$. Докажите, используя определение умножения для степенных рядов, что $e^t e^{-t}=1$.
# Определим $\alpha \choose n$ для любого $\alpha$, как $\frac {\alpha (\alpha - 1) \ldots (\alpha - n + 1)}{n!}$. Найдите простое выражение для ${-n} \choose k$ для натуральных $n$ и $k$. Опишите коэффициенты производящей функции $\frac {1}{(1-t)^n}$.
# Формальный степенной ряд $\cos(t)$ определен как $\sum_{n=0}^{\infty} (-1)^n \frac {t^{2n}}{(2n)!}$, а $\sin(t)$ определен как $\sum_{n=0}^{\infty} (-1)^n \frac {t^{2n+1}}{(2n+1)!}$. Докажите, что $\sin^2(t) + \cos^2(t) = 1$.
# Докажите, что $\sin(2t) = 2 \sin(t) \cos(t)$.
# Найдите последовательность вещественных чисел $a_0, a_1, \ldots, a_n, \ldots$, удовлетовряющую условию $a_0=1$, $\sum\limits_{k=0}^n a_ka_{n-k} = 1$.
# Пусть $B(t) = b_1 t + b_2 t^2 + b_3 t^3 + \ldots + b_n t^n + \ldots$, причем $b_1 \ne 0$. Пусть формальные степенные ряды $A(t)$ и $C(t)$ таковы, что $A(B(t)) = t$, $B(C(t))=t$. Докажите, что $A(t)=C(t)$. Этот ряд называется обратным к $B(t)$, обозначается как $B^{-1}(t)$.
# Будем называть нулем степенной ряд $0(t) = 0 + 0t + 0t^2 + \ldots$. Докажите, что если $A(t) \ne 0(t)$, $B(t) \ne 0(t)$, то $A(t)B(t) \ne 0(t)$.
# Докажите, что $(A(t)B(t))' = A'(t)B(t) + A(t)B'(t)$.
# Докажите, что $\int(A'(t)B(t) + A(t)B'(t)) = A(t)B(t) - A(0)B(0)$.
# Докажите, что $(A(B(t))'=A'(B(t))\cdot B'(t)$
# Формальный степенной ряд $(1+s)^\alpha$ определен как $(1+s)^\alpha=1+\frac{\alpha}{1}s+\frac{\alpha(\alpha-1)}{1 \cdot 2}s^2+\ldots+\frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{1 \cdot 2 \cdot\ldots\cdot n}s^n+\ldots$. Докажите, что $(1+s)^{1/2}(1+s)^{1/2}=1+s$.
# Докажите, что $(1+s)^\alpha(1+s)^\beta=(1+s)^{\alpha+\beta}$ для рациональных $\alpha$ и $\beta$.
# Докажите, что $(1+s)^\alpha(1+s)^\beta=(1+s)^{\alpha+\beta}$.