Изменения

Перейти к: навигация, поиск

Локальная теорема о неявном отображении

800 байт убрано, 04:49, 13 июня 2011
Нет описания правки
<tex>(\overline{x_0},\overline{y_0})</tex> — '''условный максимум''' функции <tex>f</tex>, если для всех <tex>\overline x \approx \overline{x_0},~\overline y \approx \overline{y_0}</tex> и <tex>(\overline x,\overline y)</tex>, удовлетворяющих уравнениям связи, выполняется неравенство <tex>f(\overline x,\overline y)\le f(\overline {x_0},\overline {y_0})</tex>. Если же <tex>f(\overline x,\overline y)\ge f(\overline {x_0},\overline {y_0}),~(\overline{x_0},\overline{y_0})</tex> — '''условный минимум'''.
Пример: пусть на сфере есть две точки, A и B. Тогда кратчайшее расстояние между ними — отрезок. Он будет безусловным экстремумом. Но кратчайшее расстояние между ними вдоль сферы — дуга. Это будет условным экстремумом, так как есть уравнения связи.
Для тогоДопустим все <tex> g_i </tex>, чтобы формулировка оказалась математически корректнойкак и их частные производные — непрерывны, надо, чтобы из системы уравнений связи и матрица Якоби должна быть обратимой. Тогда <tex>\overline y</tex> могла выражаться выражается через <tex>\overline x</tex> в некоторой окрестности <tex>(\overline {x_0},\overline {y_0})</tex>. Очевидно, что уравнения связи можно рассмотреть как задачу о неявном отображении. Тогда все <tex> g_i </tex>, как и их частные производные — непрерывны. Соответственно, матрица Якоби должна быть обратимой.
<tex>\overline y=\phi(\overline x),\ \overline z=f(\overline x,\phi(\overline x))</tex>. Мы получили задачу на безусловный экстреммум для <tex>\overline z</tex>. Т.к. практически неявно отображающую формулу не найти, то можно пытаться составлять некоторую систему соотношения для точек, подобранных для условного экстремума, исходя из инвариантности дифференциалов n-го порядка. По этой инвариантности необходимые условия экстремума:
<tex>dz=0</tex>
<tex>\sum\limits_{j=1}^n \frac {\delta partial f}{\delta partial x_j}(\overline x,\overline y)dx_j+\sum\limits_{i=1}^m \frac {\delta partial f}{\delta partial y_i}(\overline x,\overline y)dy_i = 0\qquad (*)</tex>
Но так как <tex>\overline y=\phi(\overline x)</tex>, то, в отличие от безусловного экстремума, в котором мы могли бы все частные производные приравнять к нулю и получить систему, мы так решать не можем, ибо <tex>dy_i</tex> зависит от <tex>dx_1,\dots dx_n</tex>. Но, в отличие от <tex>\phi</tex>, эту зависимость можно найти явно. У нас должны выполняться следующие условия:
<tex>g_k(\overline x,\overline y)=0, k=\overline{1,m}</tex>
<tex>\sum\limits_{j=1}^n \frac {\delta partial g_k}{\delta partial x_j}dx_j+\sum\limits_{i=1}^m \frac {\delta partial g_k}{\delta partial y_i}dy_i = 0</tex>
В результате мы получаем СЛАУ для зависимости дифференциалов. Её матрицей будет матрица Якоби <tex>g'_{\overline y}(\overline x,\overline y)</tex>. Раз она обратима в <tex>(x_0,y_0)</tex>, то по непрерывности она будет обратима в окрестности этой точки, следовательно, <tex>dy</tex> можно выразить через <tex>dx</tex>, формулы будут линейны.
<tex>dy_1=\sum\limits_{j=1}^n A_{1j}dx_j</tex>. Тогда, подставляя эти форулы в <tex>(*)</tex>, получим <tex>\sum\limits_{j=1}^m B_j dx_j=0 \Rightarrow B_j=0</tex>.
Мы получили систему уравнений для полученных точек, похожих на условный экстремум; которую надо решать вместе с уравнениями связи.
<tex>F(\overline x,\overline y,\overline {\lambda})=f(\overline x,\overline y)+\sum\limits_{k=1}^m \lambda_k g_k(\overline x,\overline y).</tex> Далее составляем систему соотношений так, будто для <tex>F</tex> мы стали искать безусловный экстремум:
<tex>\begin{cases} \frac {\delta partial F}{\delta partial x_j}=0\\ \frac {\delta partial F}{\delta partial y_i}=0\\ \frac {\delta partial F}{\delta partial \lambda_k}=0 \Longleftrightarrow g_k(\overline x,\overline y)=0\end{cases};</tex>
Если всё это раскрыть, получим то, о чём мы говорили выше, но эта запись более компактна.
152
правки

Навигация