Энтропия случайного источника
Определение
Определение: |
Энтропия случайного источника (англ. Shannon entropy) — функция от вероятностей исходов: | , характеризующая количество информации, приходящейся на одно сообщение источника.
Свойства
Энтропия должна удовлетворять следующим требованиям:
- Функция определена и непрерывна для всех таких наборов , что
Рассмотрим схему
c исходами и вероятностями и схему с исходами и вероятностями .Образуем комбинированную схему c
исходами следующим образом:Выбирается случайным образом один из исходов схемы
, и если произошел -й исход, выбирается случайно один из исходов схемы , а остальные исходов схемы считаются окончательными.В этой комбинированной схеме
мы получаем исходы с вероятностямиЛегко видеть, что
.Потребуем выполнения этого свойства для любой меры неопределенности.
Вычисление энтропии
Для доказательства формулы вычисления энтропии сначала докажем лемму.
Лемма: |
Доказательство: |
Будем рассматривать для (бит).Рассмотрим функцию :Пусть: , тогда иРассмотрим такое , чтоМожно заметить, что если , то неравенство останется верным.По предыдущим рассуждениям получаем, что: Делим неравенство на :
|
Теорема: |
Доказательство: |
Теперь рассмотрим функцию Приведем дроби внутри функции к одному знаменателю, получаем: Далее по свойству энтропии и доказанной лемме: |
Примеры
Энтропия честной монеты
Рассмотрим вероятностное пространство — честная монета. Найдем для нее энтропию:
Это означает что после броска честной монеты мы получим информацию в размере
бит, уменьшив степень неопределенности вдвое.Энтропия нечестной монеты
Найдем энтропию для вероятностного пространства нечестная монета с распределением Бернулли :
Ограниченность энтропии
Теорема: |
Доказательство: |
1) Докажем первую часть неравенства: Так как , тогда . Таким образом2) Докажем вторую часть неравенства: Таким образом получаем, что — выпуклая вверх функция, и , тогда для нее выполняется неравенство Йенсена: |
Тогда из теоремы и доказанной выше леммы следует, что для n исходов энтропия максимальна, если они все равновероятны.
Условная и взаимная энтропия
Определение: |
Условная энтропия (англ. conditional entropy) — определяет количество остающейся энтропии (то есть, остающейся неопределенности) события | после того, как становится известным результат события . Она называется энтропия при условии , и обозначается
Определение: |
Взаимная энтропия (англ. joint entropy) — энтропия объединения двух событий | и .
Утверждение: |
По формуле условной вероятности
Таким образом получаем, что: Аналогично: Из двух полученных равенств следует, что |
См. также
Источники информации
- И.В. Романовский "Дискретный анализ"
- Википедия — Информационная энтропия
- Wkipedia — Entropy(information_theory)