Построение по НКА эквивалентного ДКА, алгоритм Томпсона
Построение эквивалентного ДКА по НКА
НКА: .
ДКА, описанный в следующих строках является эквивалентным НКА.
ДКА: , где:
- .
- .
- .
- при условии, что .
Доказательство эквивалентности
| Теорема: |
Построенный ДКА эквивалентен данному НКА. |
| Доказательство: |
|
Докажем, что любое слово, которое принимает НКА, будет принято построенным ДКА. Сначала сделаем наблюдение, что если , и является символом перехода, то : . Рассмотрим слово w, которое принимает автомат НКА: , и Проверим, что построенный ДКА тоже принимает это слово. Заметим, что , а, значит, исходя из нашего наблюдения мы получаем, что , где . Далее несложно заметить, что , где . Таким образом, , а из определения терминальных состояний в построенном ДКА мы получаем, что , а, значит, наш ДКА, тоже принимает cлово w. Рассмотрим последовательность состояний НКА, когда принимали слово - - и последовательность состояний ДКА, когда принимали слово - . Мы знаем, что - терминальная, так как НКА принимает слово. Надо доказать, что - терминальная. Заметим, что - так как это стартовые состояния, а, значит, по нашему наблюдению и так далее. Получается, что . Мы знаем, что - терминальная вершина, а, значит, по определению терминальной вершины в нашем ДКА, что - тоже терминальная. Докажем, что любое слово, которое принимает построенный ДКА, принимает и НКА. Сначала сделаем наблюдение, что если , соответствует множеству из одного элемента - , и мы из него достигли по строке какого-то состояния , то : существует путь из в в НКА по строке . Рассмотрим последовательность состояний ДКА, когда принимали слово - . А так как - стартовое состояние, соответствует множеству из одного элемента - - стартовое состояние. Мы из достигли , возьмём любое терминальное состояние - по нашему наблюдению, в НКА есть путь из в по нужной строке, а, значит, что НКА принимает это слово. Получается, что мы доказали, что если НКА принимает слово, равносильно тому, что ДКА его тоже принимает. А это означает, что автоматы эквивалентны. |
Алгоритм Томпсона
Данный алгоритм преобразовывает НКА в эквивалентный ДКА. Мы будем использовать предыдущий алгоритм построения с одним дополнением - нам не нужны состояния недостижимые из стартового.
Поэтому в алгоритме используется обход в ширину.
Алгоритм
- очередь состояний, соответствующих множествам, состоящих из состояний НКА. - стартовое состояние НКА.
1: 2: 3: 4: 5: 6: 7: 8: ) 9: 10: 11:
Верхняя оценка на работу алгоритмы - - так как количество подмножеств множества состояний НКА не более, чем , а каждое подмножество мы обрабатываем за и ровно один раз.