Унитарные операторы
Содержание
Унитарное преобразование
Преобразование нормированного пространства, сохраняющее норму вектора, называется унитарным.
Простейшие свойства унитарного преобразования:
- унитарный оператор всегда обратим
- если оператор -- эрмитов, то оператор -- унитарный
Применение в квантовой информатике
Унитарные операторы играют огромную роль в квантовой информатике.
Воздействие на кубит
Покажем, что любое физическое воздействие на кубит в квантовой механике описывается линейным унитарным оператором как .
Линейность вытекает из линейности уравнения Шредингера. Пусть - вектор, описывающий состояние системы. Тогда уравнение Шредингера записывается как , где оператор -- оператор Гамильтона. Решение этого уравнения с начальным условием может быть записано в виде . Оператор Гамильтона должен быть эрмитовым, чтобы допустимые значения энергии системы были вещественными. Отсюда вытекает, что оператор -- унитарный, что и требовалось показать.
Унитарность оператора означает, что если исходное состояние квантовой системы нормировано, то и состояние, в которое система перейдет после совершения воздействия также будет нормированным.
Квантовые вычисления
В дальнейшем будем рассматривать воздействие на кубит (или на систему кубитов) как процесс вычисления. При этом вектор играет роль входных данных, оператор -- вычислительного процесса, а вектор -- результата вычислений.
Так как воздействие представимо унитарным оператором, то любой вычислительный процесс обратим.
Матричная запись вычислений
Будем использовать матричное представление операторов .
Рассмотрим действие оператора на кубит. В силу линейности оператора , то есть действие оператора на кубит предствляется действием на базисные вектора и , которые представляют собой ортонормированный базис в двумерном гильбертовом пространстве. Тогда получим:
Тогда вычисление можно записать в виде
или просто . Матрица называется матричным представлением оператора . Свойство унитарности оператора налагает требование унитарности на его матрицу.