Удаление бесполезных символов из грамматики
Содержание
Порождающие и непорождающие нетерминалы
Определение: |
Нетерминал | называется порождающим, если из него может быть выведена конечная терминальная цепочка. Иначе он называется непорождающим.
Очевидно, что если и только если все нетерминальные символы правой части являются порождающими, то порождающим является и символ, стоящий в левой части. Это позволяет обнаружить непорождающие нетерминалы с помощью следующей процедуры.
- Найти правила, не содержащие нетерминалов в правых частях. Составить множество нетерминалов, встречающихся в левых частях таких правил.
- Если найдено такое правило, что все нетерминалы, стоящие в его правой части, уже входят в множество, то добавить в множество нетерминалы, стоящие в его левой части.
- Если на шаге 2 множество изменилось, повторить шаг 2.
- Получено множество всех порождающих нетерминалов грамматики, а все нетерминалы, не попавшие в него, являются непорождающими.
Лемма: |
После удаления из грамматики правил, содержащих непорождающие нетерминалы, язык не изменится. |
Доказательство: |
Непорождающие нетерминалы по определению не могли участвовать в выводе какого-либо слова. |
Достижимые и недостижимые нетерминалы
Определение: |
Нетерминал | называется достижимым в КС-грамматике , если существует порождение . Иначе он называется недостижимым.
Очевидно, что если нетерминал в левой части правила является достижимым, то и все нетерминалы правой части являются достижимыми. Найти недостижимые нетерминалы можно с помощью следующей процедуры.
- Возьмём множество, состоящее из единственного элемента: .
- Если найдено правило, в левой части которого стоит нетерминал, содержащийся в множестве, добавить в множество все нетерминалы из правой части.
- Если на шаге 2 множество изменилось, повторить шаг 2.
- Получено множество всех достижимых нетерминалов, а нетерминалы, не попавшие в него, являются недостижимыми.
Лемма: |
После удаления из грамматики правил, содержащих недостижимые нетерминалы, язык не изменится. |
Доказательство: |
Недостижимые нетерминалы по определению не достижимы из стартового, следовательно они не могли участвовать в выводе какого-либо слова. |
Полезные и бесполезные нетерминалы
Определение: |
Нетерминал | называется полезным в КС-грамматике , если он может участвовать в выводе, то есть существует порождение вида . Иначе он называется бесполезным.
Теорема: |
Грамматика не содержит бесполезных нетерминалов грамматика не содержит ни недостижимых нетерминалов, ни непорождающих. |
Доказательство: |
Необходимость. Очевидно, т.к. недостижимые и непорождающие нетерминалы являются бесполезными. Достаточность. Рассмотрим любой нетерминал . Так как он достижим, существуют и такие, что . Из того, что любой нетерминал является порождающим, следует, что из любой строки можно вывести строку из терминалов. Значит, существует : , и — не бесполезный. |
Алгоритм удаления бесполезных нетерминалов
- Удалить из грамматики правила, содержащие непорождающие нетерминалы.
- Удалить из грамматики правила, содержащие недостижимые нетерминалы.
Теорема: |
Алгоритм корректен. |
Доказательство: |
Достаточность данных действий следует из доказанной выше теоремы. Докажем, что после выполнения второго шага не могут появиться новые непорождающие нетерминалы. Допустим, что в грамматике появился непорождающий нетерминал . Так как до удаления недостижимых нетерминалов существовал вывод из конечной цепочки терминалов, то было удалено хотя бы какое-то одно правило из этого вывода. Возьмем первое удалённое правило . Оно могло быть удалено только в том случае, если в присутствуют недостижимые нетерминалы. Но так как было выбрано первое удалённое правило из вывода, то — достижим, следовательно достижимы и все нетерминалы из . Значит, это правило не могло быть удалено. |
Эти шаги нельзя менять местами. Рассмотрим следующую грамматику:
Все нетерминалы в этой грамматике достижимы. Однако, если удалить как непорождающий, то нетерминал станет недостижимым.Литература
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)