Материал из Викиконспекты
								
												
				
Умножение перестановок
| Определение: | 
| Умножением (композицией) перестановок называется перестановка, получающаяся по следующему правилу:
[math] (a \circ b)_i = a_{b_i} [/math] | 
| Утверждение: | 
| Умножение перестановок ассоциативно:
[math] (a \circ (b \circ c))_i = ((a \circ b) \circ c)_i [/math] | 
| [math]\triangleright[/math] | 
| Доказывается простым раскрытием скобок.
  [math] (a \circ (b \circ c))_i = a_{(b \circ c)_i} = a_{b_{c_i}} [/math] [math] ((a \circ b) \circ c)_i = (a \circ b)_{c_i} = a_{b_{c_i}} [/math] 
 | 
| [math]\triangleleft[/math] | 
Пример
[math] \varphi(1)=\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 6 & 3 & 1 & 1 \end{bmatrix} [/math]  
[math] \varphi(2)=\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 6 & 5 & 2 \end{bmatrix} [/math]
[math] (\varphi(1) \circ \varphi(2))_i=[/math]
[math] \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 6 & 3 & 1 & 4 \end{bmatrix} \circ[/math]  
[math] \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 6 & 5 & 2 \end{bmatrix} = 
\begin{bmatrix} 4 & 1 & 3 & 6 & 5 & 2 \\ 3 & 2 & 6 & 4 & 1 & 5 \end{bmatrix} \circ
\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 6 & 5 & 2 \end{bmatrix} =[/math]
[math]\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 6 & 4 & 1 & 5 \end{bmatrix}[/math]
 Обратная перестановка
| Определение: | 
| Обратной перестановкой [math] a^{-1} [/math] к перестановке [math] a [/math] называется такая перестановка, что:
[math] (a^{-1} \circ a)_i = (a \circ a^{-1})_i = i [/math] | 
Получение обратной перестановки
Пусть в массиве p[i] содержится перестановка, тогда в массиве op[i], после выполнения алгоритма, будет содержаться обратная перестановка.
for(i = 0; i < n; i++)
{
       for(j = 0; j < n; j++)
       {
           if(p[j] == i + 1) 
           {
               op[i] = j + 1;
           }
       }
}
При представлении перестановки в виде циклов обратную перестановку можно легко получить, инвертировав все ребра в циклах.
[math] a = (1, 3, 2), (4, 5) \Rightarrow a^{-1} = (1, 2, 3), (4, 5) [/math]
Инволюция
| Определение: | 
| Перестановка, равная своей обратной, называется инволюцией:
[math] a_i = a^{-1}_i \Rightarrow (a \circ a ^{-1})_i = (a \circ a)_i = a_{a_i} = i [/math] | 
| Утверждение: | 
| Число инволюций можно посчитать, используя рекуррентную формулу:
[math] a(n) = a(n-1) + (n-1)a(n-2),\ где a(0) = 1,\ a(1) = 1,\ n\gt 1.[/math] | 
| [math]\triangleright[/math] | 
| Доказательство:
 Рассмотрим n-ый элемент перестановки. Возможны два случая, где он может находиться:
 Таким образом, получаем формулу [math] a(n) = a(n-1) + (n-1)a(n-2)[/math] n-ый элемент стоит на своём месте. Тогда оставшиеся [math]n-1[/math] элемент должны представлять собой инволюцию длины [math]n-1[/math], значит число таких перестановок равно [math]a (n-1)[/math] n-ый элемент стоит на некотором месте [math] k \ne \neq n [/math]. Тогда, чтобы перестановка была инволюцией, элемент k должен стоять на месте n. При этом остальные [math]n-2[/math] элемента также должны образовывать инволюцию длины [math]n-2[/math]. Получаем, что для фиксированного k существует [math]a (n-2)[/math] инволюций, но так как элемент k можно выбрать [math]n-1[/math] способом, то получается [math] (n-1) a (n-2) [/math] инволюций.
 | 
| [math]\triangleleft[/math] | 
 Группа перестановок
| Определение: | 
| Пусть [math] M [/math] - множество, [math] M = \{ x, y, z, ... \} [/math], и на этом множестве задана бинарная операция [math] \circ [/math], такая, что для любого [math] x, y \in M: x \circ y = z \in M [/math]. Тогда группой называется алгебраическая структура, удовлетворяющая следующим свойствам:
  [math] (g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3) [/math] - ассоциативность соответствующей бинарной операции. Существование нейтрального элемента [math] e [/math] относительно операции [math] \circ [/math], такого, что для любого [math] g \in M: g \circ e = e \circ g = g [/math] Существование обратного элемента [math] g^{-1} [/math], такого, что для любого [math] g \in M [/math]существует [math] g^{-1} \in M: g \circ g^{-1} = g^{-1} \circ g = e [/math]
 | 
| Утверждение: | 
| Множество перестановок с [math] n [/math] элементами с операцией умножения является группой (часто группу перестановок называют симметрической, и обозначают [math] S_n [/math]). | 
| [math]\triangleright[/math] | 
| Свойства 1 и 3 доказаны выше, а в качестве нейтрального элемента выступает тождественная перестановка ([math] \pi_i = i [/math]). | 
| [math]\triangleleft[/math] | 
Мощность множества симметрических групп: [math]\left\vert S_n \right\vert = n![/math]
Теорема Кэли утверждает, что любая конечная группа изоморфна подгруппе некоторой группе перестановок.
 Источники и литература